

STATE OF WISCONSIN

Department of Agriculture, Trade and Consumer Protection

Approval # 20230009 (Replaces #20190005)

Bureau of Weights and Measures Storage Tank Regulation P.O. Box 7837 Madison, WI 53707-7837

Wisconsin ATCP 93 Material Approval

Equipment: Automatic Tank Gauging, Volumetric Tank

Tightness Testing, Line Leak Detection, Liquid

and Vapor Monitoring, and Secondary Containment Leak Detection Systems

Manufacturer: Veeder-Root Company

125 Powder Forest Drive

P.O. Box 2003

Simsbury, CT 06070

Expiration of Approval: December 31, 2026

SCOPE OF EVALUATION

The sensing probes used with the Veeder-Root TLS 450, TLS 450Plus (8600), TLS 4 (8601), TLS 4i, and TLS 4c consoles; TLS 450, TLS 450Plus (8600), TLS 4, TLS 4i, TLS 4c (8601) with Continuous Statistical Leak Detection (CSLD); TLS 450, TLS 450Plus (8600), TLS 4, TLS 4i, TLS 4c (8601) with Manifold Tanks CSLD; Wireless Pressurized Line Leak Detector (WPLLD); Pressurized Line Leak Detector (PLLD); Digital Pressurized Line Leak Detector (DPLLD); dispenser pan/sump sensors, and the Secondary Containment Leak Detection System manufactured by Veeder-Root have been evaluated for use as leak detection equipment conforming to specified portions of **ss. ATCP 93.510** and **ATCP 93.515** of the current edition of the Wisconsin Flammable and Combustible Liquids Code.

DATCP Material Approval No. 20230009 (Replaces 20190005) Page 2 of 17

This evaluation summary is condensed to provide the specific installation, application and operation parameters necessary to maintain the subject systems in compliance with the Wisconsin Administrative Code – ATCP 93.

DESCRIPTION AND USE

All versions of the Automatic Tank Gauges (ATG), Tank Tightness Testing (TTT), and line leak detection systems may be used with gasoline, diesel fuel, aviation fuel, solvents, and used oil: has to be pure oil-not mixtures of oils, gasoline or solvents, etc.

Alternative Fuel Note: Veeder-Root has to test and approve all biodiesel blends, including B100, before any of the ATG probes can be used to meet Wisconsin leak detection requirements. This is not a material compatibility test, rather a functionality test due to possible variations in product specific gravity which may affect float operation. PLLD and sensor performance and compatibility are not affected by any biodiesel blend.

Ethanol based blends greater than 15% must use the Alternative Fuel Probes and compatible sensors. The ATG water float will detect level of pure water, not all ethanol/water mixtures. PLLD performance and compatibility are not affected by any ethanol blend.

Tank Leak Detection

Probe-Console Application Chart (Tanks)

Probe No.	Application	TLS 450, 450 Plus 8600	TLS 4, TLS 4i, TLS 4c 8601
8463	TTT or ATG	X	Χ
8473	TTT or ATG	Х	
8463 with Manifolded Tanks and CSLD	Monthly Monitor	Х	Х
8473 with Manifolded Tanks and CSLD	Monthly Monitor	Х	

The **8463** and **8473** probes measure changes in product volume by detecting changes in the level of a float using the magnetostrictive principle. These probes, when used with the appropriate consoles, have a preset leak detection threshold that cannot be changed by the operator, installer or technician. Results are reported as "Passed" or "Failed".

The **CSLD** option operates in a long term sampling mode using statistical analysis to evaluate product and temperature levels collected by the probes every few seconds. The system identifies periods during product dispensing, stabilization periods after product delivery and periods of temperature instability and ignores data from those periods. The system prints a leak test report daily or on demand. The report indicates a pass, fail or inconclusive result using data from up to, but no more than, the preceding 28-day period.

Line Leak Detection

PLLD-Console Application Chart (Line)

PLLD No.	Application	TLS 450, TLS 450 Plus 8600
8484	3.0, 0.2, 0.1 gph	
8494	3.0, 0.2, 0.1 gph	
8590	3.0, 0.2, 0.1 gph	Х

TLS Pressurized Line Leak Detectors

The Pressurized Line Leak Detector (PLLD) for both rigid and flexible piping, **8484 series**; Digital Pressurized Line Leak Detector (DPLLD) for both rigid and flexible piping, **8590 series** and the Wireless Pressurized Line Leak Detector for rigid piping, **8494 series**, operate during idle periods by independently pressurizing the pipeline system, then isolating the system from the pump and monitoring the pressure drop. The pressure drop is measured for several pressurization cycles, which are determined by the equipment. When the leak detection system determines that thermal effects have been sufficiently reduced, it compares the final pressure drop with a preset limit. If the pressure drop exceeds that limit, a leak is declared.

Liquid Sensors

The following chart shows the appropriate consoles to be used with sensing probes, and the typical application/capability for each sensor.

Sensor-Console Application Chart

Sensor No.	Application	TLS 450, 450 Plus 8600	TLS4, 4i, 4c 8601
794380-20X	Sump ¹	X	Χ
794380-320	DiscrDisp. Pan ^{3,4}	X	Χ
794380-322	DiscrDisp. Pan ^{3,4}	X	Χ
794380-321	Dispenser Pan ¹	X	Χ
794380-323	Sump-Pos. Sensitive ^{1,7,11}	X	Χ
794380-30X	Hydrostatic (FRP) ²	X	Χ
794380-344	Micro ^{1,11}	X	Χ
794380-343	Discriminating (FRP) ^{3,4}	X	Χ
794380-345	Interstitial (FRP- ethanol conc. 85% and lower)	Х	Х
794380-350	Discriminating-Sump ^{3,4}	X	Χ
794380-351	Sump ¹	Х	Χ

DATCP Material Approval No. 20230009 (Replaces 20190005) Page 4 of 17

794380-352	794380-352 Discriminating-Sump ^{3,4}		Χ
794390-700	Vapor⁵	X	Χ
794380-62X	Groundwater ³	Х	Х
794390-4X0	Steel Tank ^{1,11}	Х	Χ
794390-40X	Fiberglass Tank ¹	X	Χ
794390-62X	Groundwater ³	X	Χ
857080-XXX	Discriminating-Sump ^{4,6,7,8,9}	X	Χ
847990-00X	Stand-Alone Disp. Pan ¹⁰		
	Vacuum Sensor for Pipe &		
857280-100	Sumps 1 pipe or 1 sump		
	Vacuum Sensor for 1 steel		
857280-200	tank		
	Vacuum Sensor for 4' Dia		
857280-301	Fiberglass tanks		
	Vacuum Sensor for 6' Dia		
857280-302	Fiberglass tanks		
	Vacuum Sensor for 8' Dia		
857280-303	Fiberglass tanks		
	Vacuum Sensor for 10' Dia		
857280-304	Fiberglass tanks		

- 1: Capable of detecting any liquid that exceeds the threshold level.
- 2: Monitors the level of ethylene glycol or calcium chloride solution in the interstitial of a fiberglass double wall tank.
- 3: May be used for gasoline, synthetic fuel, diesel fuel, fuel oil, aviation fuel, and solvents.
- 4: Capable of detecting water.
- 5: Gasoline or JP-4 jetfuel.
- 6: Gasoline or diesel fuel
- 7: Sensor will alarm if raised from bottom of containment sump.
- 8: Correct positioning of the magnetostrictive probe is essential; vertical positioning shall not cause binding of the rod and float, and mounting of probe must be secure and stable.
- 9: This probe can be used for sump integrity testing.
- 10: The Stand-alone dispenser pan sensor immediately shuts down AC power to the dispenser when 1.5 inches of fluid, as measured from the bottom of the sensor, is detected in the pan. There is not a separate reporting or alarm console associated with this equipment.
- 11: Approved for high alcohol fuels

TESTS AND RESULTS

Tank Tightness Testing Systems

The performance of the series **8463** and **8473** probes were determined in accordance with the EPA Protocol for volumetric tank testing methods. The probes were found to be capable of detecting a leak of 0.10 gallon per hour leak within a probability of detection (P_D) of 95 percent and probability of false alarm (P_{FA}) of less than 5 percent.

<u>Automatic Tank Gauging Systems</u>

The performance of the series **8463** and **8473** probes were determined in accordance with the EPA protocol for ATG systems.

The series 8463 and 8473 probes were certified to within the 95-5 ranges required by the EPA

DATCP Material Approval No. 20230009 (Replaces 20190005) Page 5 of 17

protocols for detecting a leak of 0.20 gallon per hour.

CSLD Monthly Monitoring

The Veeder-Root **consoles with CSLD option** and **series 8463** or **8473** probe were evaluated using an alternative test procedure and were certified to within the 95-5 ranges required by the EPA protocols for detecting a leak of 0.20 gallon per hour.

Pressurized Line Leak Detectors

The Veeder-Root TLS series pressurized line leak detector consoles and probes, **series 8484**, and **8494** were evaluated using the Standard Test Procedures for Evaluating Leak Detection Methods: Pipeline Leak Detection Methods. The TLS 450 (8600) digital pressurized line leak detector **series 8590** was evaluated through comparison testing with the TLS 350 pressurized line leak detector consoles and series 8484 line leak detector combination by Ken Wilcox Associates.

When used as an automatic line leak detector with rigid and flexible piping, the PLLD and DPLLD systems are certified capable of detecting a 3 gallon per hour leak within the 95-5 ranges required by the EPA protocols.

When used as a monthly monitoring leak detector with rigid and flexible piping, the PLLD and DPLLD systems are certified capable of detecting a 0.2 per hour leak within the 95-5 ranges required by the EPA protocols.

When used as a line tightness test with rigid and flexible piping, the PLLD and DPLLD systems are certified capable of detecting a 0.1-gallon per hour leak within the 95-5 ranges required by the EPA protocols.

DATCP Material Approval No. 20230009 (Replaces 20190005) Page 6 of 17

When used as an automatic line leak detector with rigid piping, the WPLLD system is certified capable of detecting a 3 gallon per hour leak within the 95-5 ranges required by the EPA protocols.

When used as a monthly monitoring leak detector with rigid piping, the WPLLD system is certified capable of detecting a 0.2 per hour leak within the 95-5 ranges required by the EPA protocols.

When used as a line tightness test with rigid piping, the WPLLD system is certified capable of detecting a 0.1-gallon per hour leak within the 95-5 ranges required by the EPA protocols.

Liquid Sensors

Testing of the liquid sensors was conducted in accordance with a modified version of the EPA Standard "Liquid-Phase Product Detectors" protocol.

Secondary Containment Leak Detection System- SCLD (Tank, Lines, Sumps)

The Veeder-Root Secondary Containment Leak Detection System (SCLD) was evaluated according to the "European Standard EN 13160-2, "Leak Detection Systems – Part 2: Pressure and vacuum system", May 2003. The system as designed meets all of the protocol requirements.

TLS 450 (8600) series and TLS 4 (8601) series Consoles:

Detailed here are examples of the typical Tank Leak Test History Report, Line Leak Passed Test History Report, and Sensor Status Report. (Site Name/Address is printed on 1ST sheet of report)

report) Simsbury lab uni	Ť												
	•	L											
EEDER-ROOT													
NORLD HEADQUARTE	TRS .					NOV 17, 2009	9:4	4 AM					
TANK LEAK TEST H	HISTORY - PASSED T	EST RESU	LIS			SIMSBURY LAB WEEDER-ROOT WORLD HEADQU							
T 1: 113 RUL NO	RTH			AUERAGE	Х	PRESSURE LIN	E LEA	K REPORTS	- PA	SSED TEST	S HISTORY		
REPORT TYPE	DATE/TIME	METHOD	HOURS	MOTRIME	VOLUME	LN 1: 113 RU	L NOR	TH					
LAST GROSS	89/11/17 89:84	SLD	****	3434	14.8	IEST TYPE		DATE & I	IHE		TEST METHOD	GROSS TEST PREV 24 HOURS	GROSS TEST SINCE MIDNIGHT
LAST PERIODIC	89/11/17 85:51	CSLD	44	3507	15.1	G3022					PLLD	8	
						LASI GROSS		NOU 3,	2889	12:47 PM	PLLD		
						LAST PERIO	DIC	AUG 24,	2889	2:58 PM	PLLD		
						LAST ANNUA	L	APR 7,	2889	3:86 AM	PLLD		
						FIRST PERI	ODIC	AUG 24,	2889	2:58 PM	PLLD		
						FIRST PERI							
						FIRST PERI							
						FIRST PERI					PLLD		
						FIRST PERI					PLLD		
						FIRST PERI		-700			PLLD		
						FIRST PERI							
						FIRST PERI	ONIC	oLF 16,	4949	MH SSIF	PLLO		
						FIRST ANNU	AL	APR 7,	2009	3:86 AM	PLLD		
													\$
Tank L	eak Test H	istor	y Ex	ample	e: Las	Line Lea	ak	Repo	ort	Exa	mple	e:	
	ort for all a		di la			Automat		-			-		

TLS 450 (8600) series and TLS 4 (8601) series Consoles, continued:

NOU 17, 2009 9:45 AM SIMSBURY LAB UNIT VEEDER-ROOT WORLD HEADQUARTERS SENSOR STATUS REPORT - ALL SENSORS	NOU 17, 2009 9:45 AM SIMSBURY LAB UNIT VEEDER-ROOT HORLD HEADQUARTERS SELECTED RANGE: DATE RANGE: NOU 2, 2009 9:45 AM - NOU 17, 2009 9:45 AM SENSOR STATUS HISTORY REPORT - ALL SENSORS
# SENSOR LOCATION STATUS MS 1 NORMAL MS 2 NORMAL MS 3 NORMAL	# SENSOR LOCATION STATUS ACTIVE CLEAR HS 1 COMMUNICATION ALARM 11-17-89 8:14A 11-17-89 8:18A HS 1 COMMUNICATION ALARM 11-17-89 8:83A 11-17-89 8:89A HS 1 COMMUNICATION ALARM 11-89-89 9:41A 11-89-89 9:46A HS 2 COMMUNICATION ALARM 11-17-89 8:83A 11-17-89 8:18A HS 2 COMMUNICATION ALARM 11-17-89 8:83A 11-17-89 8:89A HS 2 COMMUNICATION ALARM 11-17-89 8:83A 11-17-89 8:89A HS 3 NORMAL
Sensor Status Report Example	Sensor Status History Report Example

LIMITATIONS / CONDITIONS OF APPROVAL

General

- All monitoring equipment shall be installed, calibrated, operated, and maintained in accordance
 with the manufacturer instructions, and verified every 12 months for operability, proper
 operating condition, and proper calibration by a certified service technician. Records of
 sampling, testing, or monitoring shall be maintained in accordance with ATCP 93.230.
- The manufacturer shall submit for a revision to this Wisconsin Material Approval application if any of the functional performance capabilities of this equipment are revised. This would include, but not be limited to changes in software, hardware, or methodology.
- While 3rd party testing does determine a required minimum tank level, EPA leak detection regulations require testing of the portion of the tank system which routinely contains product. Consistent testing at low levels could allow a leak to remain undetected.

During leak testing, a minimum level of product in tank shall be maintained so as to ensure testing of the portion of the tank and/or piping that routinely contains product, regardless of testing system capability. For instance, if product levels are routinely maintained at 60%, but the leak detection system is capable of testing at 15% product level, then testing shall be performed at 60% levels.

• If performing a tank tightness test, minimum tank level shall be 95%, regardless of leak detection system minimum capability.

Tank Monitoring ATG's and Tightness Testing (static monitoring)

 Critical performance parameters for the series 8463 and 8473 probes with the TLS-450 (8600) series, consoles for annual 0.1 gph and monthly 0.2 gph testing: (Magnetostrictive probe)

Parameter	Value	
Maximum Tank Size ¹	Up to 15,000 gallo	ns
Software Version	N/A	
Minimum Tank Level	Minimum product level is	based on
(0.2 gph testing only-	tank diameter as follows:	
0.1 gph testing must be performed at 95%)	Probe Working Length	<u>Minimum</u>
	(Tank ID in inches)	Level (in) ²
	24 thru 26	9
	27 thru 36	12
	37 thru 47	15
	48 thru 58	18
	59 thru 69	21
	70 thru 79	24
	80 thru 90	27
	91 thru 101	30
	102 thru 111	33
	112 thru 122	36
	123 thru 133	39
	134 thru 143	42
	144 thru 154	45
	155 thru 165	48
	166 thru 175	51
	176 thru 177	54
Waiting time between filling tank and test	8 hours minimum (mont	nly -0.2 gph)
start ³ (Stabilization Time)	8 hrs. 15 min. minimum	
	gph)	`
Waiting time between dispensing and test start	30 minutes minin	num
Minimum Test Period ⁴	2 hours (0.2 gph test)	
	3 hours (annual- 0.1 gph))

^{1:} Monthly and annual testing can only be performed on one tank at a time. If two or more tanks are manifolded together, an isolation valve (siphon break) will have to be installed so as to separate the tanks individually.

^{2:} Minimum level from probe bottom is same as product level in tank, assuming the typical configuration where the probe touches the bottom of the tank.

^{3:} There must be no delivery during waiting time.4: There must be no delivery or dispensing during testing.

Critical performance parameters for the Series 8463 and 8473 probe with the TLS-450 (8600) series, consoles for annual 0.1 gph and monthly 0.2 gph testing: (Magnetostrictive probe)

Parameter	Value	
Maximum Tank Size ¹	Up to 20,000 galle Up to 30,000 galle	` • •
Software Version	N/A	ono (o.z gpn)
Minimum Tank Level	Minimum product level is	based on
(0.2 gph testing only-	tank diameter as follows:	54554 511
0.1 gph testing must be performed at 95%)	Probe Working Length	Minimum
gp. reemig maerice perfermed at ee /e/	(Tank ID in inches)	Level (in) ²
	,	` '
	24 thru 26	9
	27 thru 36	12
	37 thru 47	15
	48 thru 58	18
	59 thru 69	21
	70 thru 79	24
	80 thru 90	27
	91 thru 101	30
	102 thru 111	33
	112 thru 122	36
	123 thru 133	39
	134 thru 143	42
	144 thru 154	45
	155 thru 165	48
	166 thru 175	51
	176 thru 177	54
Waiting time between filling tank and test	8 hours minimum (0.2 g	
start ³ (Stabilization Time)	For 0.1 gph testing the fol	
	are to be matched with th	
	corresponding test times	
	Scenario: A: 8 hours r	-
	B: 9 hours i	
	C: 10 hours i	
	D: 11 hours r	
Waiting time between dispensing and test start	30 minutes minin	num
Minimum Test Period ⁴	2 hours (0.2 gph test)	
	For 0.1 gph match with so	enario above
	Scenario: A: 5 hours r	
	B: 4 hours i	minimum
	C: 3 hours i	minimum
	D: 2 hours i	minimum

^{1:} Monthly and annual testing can only be performed on one tank at a time. If several tanks are manifolded together, an isolation valve will have to be installed so as to separate the tanks individually.

^{2:} Minimum level from probe bottom is same as product level in tank, assuming the typical

- configuration where the probe touches the bottom of the tank.
- 3: There must be no delivery during waiting time.
- 4: There must be no delivery or dispensing during testing.

Critical performance parameters for the **Series 8463** probe with the **TLS-4 (8601) series** consoles for monthly 0.1 gph and monthly 0.2 gph testing: (Magnetostrictive probe)

Parameter	Value
Maximum Tank Size ¹	Up to 20,000 gallons (0.1 gph)
	Up to 30,000 gallons (0.2 gph)
Software Version	N/A
Minimum Tank Level	50%
Waiting time between filling tank and test start ³ (Stabilization Time)	8 hours minimum
Waiting time between dispensing and test start	30 minutes minimum
Minimum Test Period ⁴	3 hours

- 1: Monthly and annual testing can only be performed on one tank at a time. If several tanks are manifolded together, an isolation valve will have to be installed so as to separate the tanks individually.
- 2: Minimum level from probe bottom is same as product level in tank, assuming the typical configuration where the probe touches the bottom of the tank.
- 3: There must be no delivery during waiting time.
- 4: There must be no delivery or dispensing during testing.

Tank Monitoring ATG's w/CSLD (24-hour, 0.2 gph monthly monitoring)

Critical performance parameters for the series 8463 and 8473 probe with the TLS-450 (8600) series, consoles: (Magnetostrictive probe)

Parameter	Value
Maximum Tank Size ¹	45,000 gallons (Single Tank)
	37,000 gallons (Manifolded Tanks)
Software Version	N/A
Minimum Tank Level ²	5%
Maximum Monthly Throughput	227,559 gallons (Single Tank)
	226,848 gallons (Manifolded Tanks)

- 1: Manifolded tank capacity is an aggregate capacity of all tanks.
- 2: The CSLD system will automatically check the tank level, and not perform a test if the tank level is below the minimum.

• Critical performance parameters for the **series 8463** probe with the **TLS-4 (8601) series** console: (<u>Magnetostrictive probe</u>)

Parameter	Value
Maximum Tank Size ¹	43,722 gallons (Single Tank or up to 3
	Manifolded Tanks)
Software Version	N/A
Minimum Tank Level ²	15%
Maximum Monthly Throughput	235,000 gallons (Single Tank or up to 3
	Manifolded Tanks)

- 1: Manifolded tank capacity is an aggregate capacity of all tanks.
- 2: The CSLD system will automatically check the tank level, and not perform a test if the tank level is below the minimum.

Electronic Line Leak Detectors

- The Veeder-Root Electronic Line Leak Detectors are approved for use on pipeline systems for underground storage tank facilities that contain petroleum or other chemical products. It is approved for use on rigid piping and flexible piping.
- An annual test of the operation of the leak detector shall be conducted in accordance with
 the manufacturer procedures for testing by inducing a physical line leak calibrated to a
 3.0 gph @ 10 psi equivalent leak rate. The individual performing the test must be
 qualified by the equipment manufacturer or an individual meeting the requirements of
 SPS 305.88 for pipe testing.
- Mechanical line leak detectors shall be removed from the pipeline before testing.
- This test cannot be used if trapped vapor is present in the system.

Pressurized

 Critical performance parameters for the series 8484 Line Leak Detector with the TLS and ProMax consoles:

Rigid Piping: (Fiberglass or steel)

Parameter	Value
Maximum Test Line Size	3 in.
Total maximum allowable volume of product in	119.4 gallons or less
any rigid test pipeline	-

Note: All other critical parameters, such as test line pressure; minimum test times; minimum wait times between product dispensing and start of test are pre-programmed into the software and are not accessible for viewing.

Flexible Pipina:

Parameter	Value
Minimum Flexible Piping Bulk Modulus	User selectable on console. For a list of currently approved piping, contact Veeder-Root.
Total maximum allowable volume of product in any flexible test pipeline	119.4 gallons or less

Note: All other critical parameters, such as test line pressure; minimum test times; minimum wait times between product dispensing and start of test are pre-programmed into the software and are not accessible for viewing.

Hybrid Piping (Flexible and Rigid) 3.0 gph testing only:

Parameter	Value
Minimum Flexible Piping Bulk Modulus	User selectable on console. A measurement of bulk modulus must be made at the owner's facility so that the software can be programmed to deal with the specific characteristics of the piping system at the facility. Contact Veeder Root for the procedure.
Software version	23 or higher
Total maximum allowable volume of product in any Hybrid test pipeline	212 gallons or less for 3.0 gph

Note: All other critical parameters, such as test line pressure; minimum test times; minimum wait times between product dispensing and start of test are pre-programmed into the software and are not accessible for viewing.

 Critical performance parameters for the Series 8494 Line Leak Detector with the TLS, TLSPC, and LLD 300 consoles: (Note: This Line Leak Detector is 3rd party certified for rigid piping only)

Rigid Piping: (3" Fiberglass or steel)

Parameter	Value
Maximum Test Line Size	3 in.
Total maximum allowable volume of product in	100 gallons or less
any rigid test pipeline	

Note: All other critical parameters, such as test line pressure; minimum test times; minimum wait times between product dispensing and start of test are pre-programmed into the software and are not accessible for viewing.

Liquid Sensors

- The Liquid Sensors shall be placed such that a release from any portion of the tank or piping will be detected.
- Reference the <u>Sensor-Console Application Chart</u> under the <u>Description and Use</u> section of this material approval for application of appropriate sensor for the product.

Installation Notes:

- When monitoring double-wall tanks, a liquid sensor must be located at the lowest point of interstitial space.
- Manifolded tanks require that the interstice of the tanks be manifolded to a common vacuum pump.
- The interstitial space shall be rated for the operating vacuum of the leak detector, in consideration of temperature and groundwater fluctuations. Refer to Veeder-Root installation and Operation Guides for assistance.
- This system may not be compatible with all secondary contained tanks and/or piping.
 Consult with the tank and/or piping manufacturer and the manufacturer's applicable
 recommended installation practices before installing this system, or damage may be
 caused to the tank or piping by its use.

DATCP Material Approval No. 20230009 (Replaces 20190005) Page 17 of 17

This approval will be valid through December 31, 2026, unless manufacturing modifications are made to the product or a re-examination is deemed necessary by the department. The Wisconsin Material Approval Number must be provided when plans that include this product are submitted for review.

DISCLAIMER

The Department is in no way endorsing or advertising this product. This approval addresses only the specified applications for the product and does not waive any code requirement unless specified in this document.

Effective Date: September 20, 2023													
Reviewed by:	Erik Otterson	Date:	9/20/2023										
	Environmental Engineering Specialist												
Approved by:	Any Banto	Date:	9/20/2023										
	Greg Bareta, P. E. Section Chief												
	Storage Tank Regulation Bureau of Weights and Measures												

_				P	a (JC	_			''	'																																																									
Volume			0.0762 Gal / Ft	0.9824 (38//FT		0.0077 (24.15)	0,000,000,000	1 / 100 + 500.0	2 50 Cal / Ft	275 Cal / Et		10,000	E 20 CF	300	500	80.6	300	85.0	3	7	8	8	7 @	7.08	288	7 Get	7 Gel	5 68	5 Gal	5 63	100	300	300	258		3.5 Gal	85 CC				8 Gal / Tank	10 Cell / Tarrik		48 Gal / Tank	59 Gal / Tarnik	76 Gal / Tank	93 Gel / Tarrik	110 Gal / Tank				76 Gal / Tank	95 Gal / Tank	114 Gal / Tank	152 Gal / Tank	189 Gel / Tank	227 Gal / Tarrik	284 Gal / Tenk		144 Gal / Tank	167 Cal / Tank	213 Gal / Tank	280 Gal / Tank	225 Gal / Tank	275 Cal / Tank	498 Gal / Tank	470 Cal / Tank	
Type		UPP	63/75 piping	90/160 piping		Trestern rubergiass	Collect of plans	Right 7 vol to	47" Double Walled FRP Tank Sumo	48* Double Walted ERD Tank Sumo	diam's and a second of	Owible Welled Denominar Comm DC1940	Deskie Marked Descende Comp. Do 1040	Course verse Laberta Sump Lo 1030	Louise Walled Lispersed Sump Louise	Louble Walled LASPETSET SUMP LASTON	Couple Wated Lisperser Sump US 1630	Louise wated Lisperser Sump LOS 1142	Double Walled Lispenser Sump LS1323	Couple wated Disperser Sump DS1320	Double Walted Dispenser Sump DS1130	Double Walked Dispenser Sump DS1129	Double Walted Dispenser Sump DS1125	Double Walled Dispenser Sump DS1123	Double Walled Dispenser Sump DS1122	Double Walled Dispenser Sump DS1121	Double Walled Dispenser Sump DS1120	Double Walled Dispenser Sump DS1118	Double Welled Dispenser Sump DS1117	Double Welled Dispensor Sumn DS1115	Double Walled Disnesser Sum DS1114	DOMESTIC DESCRIPTION OF 11 14	Louble Walted Lisperser Sump US 1112	Louble Walled Lispenser Sump LISU/11		Small Vent Box (24x30x30)	Large Verti Box (24x4/2x29)		Хөгхөв	Double Walf Tanks	48" Diameter 600 Gallon Capacity	48" Diameter 1,000 Gallon Capacity		72" Diameter 2,500 Gallon Capacity	72" Diameter 3,000 Gallon Capacity	72" Diameter 4,000 Gallon Capacity	72" Diameter 5,000 Gallon Capacity	72" Diameter 6,000 Gallon Capacity		Хөгхөв	Double Wall Tanks - continued	96" Diameter 4,000 Gallon Capacity	96° Diameter 5,000 Gallon Capacity	96" Diameter 6,000 Gellon Capacity	96" Diameter 8,000 Gellon Capacity	96" Diameter 10,000 Gallon Capacity	96" Diameter 12,000 Gallon Capacity	96" Diameter 15,000 Gallon Capacity		120" Diameter 10,000 Gallon Capacity	120" Diameter 12 000 Gallon Caracity	120" Diameter 15 000 Gallon Caracity	130" Diameter 20 000 Gallon Canacity	120° Dismater 25,000 Callon Canacity	420° Demoter 20 000 Collective	120" Diameter 35 000 Gallon Canadiv	120 Camping All Oth Callon Caracity	- Commission was a second of the commission of t
Volume				41 Ga / Lank	OF COS. 1888	70 Get / Tonk	120 Cel / Tent	142 Gal / Tank	150 Cal / Tank	157 Gal / Tank	172 Cal / Tank	182 Cal / Tork	TO COL	101 70 FO	A 12 / 12 / 12 / 12 / 12 / 12 / 12 / 12	100 to7	307 (38) / 18TK	305 GB / LBTK	420 (387 (87K	4/1 (58) 18TK	DOT GALL BATK			3 Cal / Tank	4 Gal / Tank	5 Gal / Tank	6 Gal / Tank	7 Gal / Tank		9 Cal / Tank	40 Cal / Tonk	10 Cal / 12/18	13 GM / 1811K	X 25 / 150 CT	1/ Gal / IBNK	Zz Gal / Tank			0.0546 Gal / Ft	0.0518 Gal / Ft	0.3299 Gal / Ft	0.401 Gal / Ft			1.9 Gel / Ft		0.8 Ge		l	0.9 Gal	12 Gal	8		19 Gal		Γ	Г	0.0086 Gal / Ft	Γ			1 1126 Cal / Et				Τ	0.25 GW / Ft	
Муре		Modern Welding	Steel walled tank w/ FRP exterior (Model 16):	520 Galon Tank, 4 ft dia	1,000 Galdin Lark, D.I. 4 H. Ga	2,000 Gellon Tank, 5 # 4 in 45	A DO Callon Tank	5 000 callon tank	6 000 callon tank	8 000 Callon Tank	10 000 Callon Tank	10,000 Callon Teach	45 000 Callon Tout	DOMO CONTINUE TO THE	ZU,UUU GERGII IERIK	XIBI UNBORNICZ	SULUM Galian Lank	SO, ULU genon tarrik	40,000 Gallan Iank	45,000 gallon tank	50,000 Gallon Tank		Steel walled composite tanks (Glasteel II, Model 13)	560 Gallon Tank	1,000 Galfon Tarik	2,000 Gallon Tarik	3,000 Gelfon Tank	4,000 Gallon Tarik		6 000 Gallon Tank	9 000 Callon Tests	O,000 Callon Tark	TU,UUU Garon Iank	12,000 Gallon Tarix	15,000 Gallon Tank	20,000 Gallon Tank		Nupi	2" over 1.5" piping (2.48" OD x 1.969" OD)	3" over 2" piping (2.953" OD x 2.480" OD)	4" over 3" piping (4.921" OD x 3.543" OD)	4" over 2" piping (4.3" OD x 2.48" OD)		MdO	Double Wall Dispenser Sump, DST series		Tank Sumo 42" Dia x 42" Ht. TRFSDW-4248	Tank Sumo 42" Dia x 60" Ht. TRFSDW4260	Tank Sumo 42" Dia x 72" Ht. TRFSDW-4272	Tank Sump 48" Dia x 42" Ht, TRFSDW 4848	Tank Sump 48" Dia x 60" Ht. TRFSDW-4860	Tank Sump 48" Dia x 72" Ht. TRFSDW-4872		Double Wall Vent Stack Sumo 1ST-4536		CD15DW. 1-1/2" Double Wall Pipe	CD15RB, 1-1/2" Ribbed Double Well Pine	CP20RB, 2" Ribbed Double Wall Pipe		Phil Tite	42" Double wall Tank Sumo	48" Dorble well Tank Samo	Darkle well IPC	COUNTY WERE CITY	6141.	2 Aug 7 Elberdass piping	4" over 2" Ethernlass philip	e UNI o constituent in the constituent of the const
Vokime			- 1	1		1	25030	2014 Gal/Tank	307.4	323.5	330.5	38.5	207.7	1	3	9130	803	465.9	Mail (Ma)	8	28.	612.3	708.6 Get/Tenk	80	8				0.9372 Gal/Ft			2 Call Tout	A C C C C C C C C C C C C C C C C C C C			6 Gal/Tarrix				10 Gal/Tarrk	13 Gai / Tank	15 Gal / Tank	17 Gal/Tank	22 Gal/Tank				0.0028 Gal / Ft	Γ	Γ	Г	0.0164 Cal / Ft	Γ		5 Gal	6.5 Gal	6.5 Gal	10 Ga	7 Ga	808	10.00	85 Gal	10.5 Gal	1000	500	100 cc	200	
Type		Containment Solutions	Double Wall Tanks - continued	120 Diameter 10,000 Gallon Capacity	120 Udaliera 12,000 Central Capacity	120 Utameter 15,000 Gallon Canaday	120 Lamines 12,000 Colors (Special)	120° Clameter 18 000 Callon Capacity	120" Diameter 19 000 Gallon Canacity	120" Diameter 20 (20) Gallon Canacity	120° Clameter 21 (00) Callon Canacity	120 Complete 2: XXX Calcul Capacity	120 Dismotor 22 000 Colless Consents	120 Collinera 23,000 Carroll Capacity	120 Ligameter 24,000 Central Capacity	120 Demieter 23,000 Genori Capacity	120 Dameter 20,000 Gallon Capacity	120 Liameter 26,000 Garon Capacity	12/ Dameter 30,000 Gallon Capacity	12/ Dameter 31, UU Gallon Capacity	120 Dameter 32,000 Gelfon Capacity	120" Diameter 35,000 Gallon Capacity	120" Diameter 40,000 Gallon Capacity	120" Diameter 45,000 Gallon Capacity	120" Diameter 50,000 Gallon Capacity		Double Wall Sumps	42" Double Walled Tark Sump	48" Double Walled Tank Sumo		CES lackated Tentes	CLO COCKORO CORMO	500 Geton Standard Edition Lank	1,000 (alton Standard Flutron Lank	2,000 Gellon Standard Elutron I ank	3,000 Gallon Standard Elutron Lank	4,000 Gellon Standard Hutron lank	5,000 Gellon Standard Elutron Tank	6,000 Gallon Standard Elutron Tank	8,000 Gallon Standard Elutron Tank	10,000 Galfon Standard Butron Tank	12,000 Gelfon Standard Elutron Tank	15,000 Galfon Standard Elutron Tank	20,000 Gellon Standard Elutron Tank		Environ	GeoFlex Piping	GeoFlex Piping 75 Dia (GFP-2075)	GeoFlex Pioing 1.0" Dia. (GFP-2100)	GeoFlex Piping 1.5" Dia. (GFP-2150)	GeoFlex Piping 2.0" Dia. (GFP-2200)	GeoFlex Piping 3.0" Dia. (GFP-2300)		Dispenser Sump	Dispenser Sump FDS-2014-DW	Dispenser Sump FDS-2414-DW	Dispenser Sumo FDS-2716-DW	Dispenser Sump FDS-2922-DW	Dispenser Sump FDS-3215-DW	Dispenser Sump FDS-3621-DW	Dispenser Sumo FDS 4021-DW	Dispenser Sum FDS 4319-DW	Disperser Sum FDC 4472 DW	Dispersor Sums EDS 4614 DW	Discourse Sums EDC 4744 DAV	Disperser Samp FDS 4715 DW	Discourage Camp EDC 4791-DW	Control of the last of the las
Volume		0.2186 Gal / Ft	0.2652 Cel / Ft	0.8338 Gal / Ft	127.0000	0.0133 GBI/FI	Т	1		0 0034 (Sel / Et	1	Т	7	0.000 CM / FF	Т	0.0216 GM / FI	7			Outro Call			1.1429 Gal/Ft	98/F		1.25 Gal/Sump	2.00 Gal/Sump				A Cal / Tonk					33.4 Gal/Tarrix		Gel / Tenk	Gei / Tark	Gel / Tank	66.4 Gal/Tank	Gal / Tank	Gal/Tank	Gal / Tank	116.1 Gal / Tank			32.2 Gal / Tarik	42.7 Gal/Tank	53.2 Gal / Tank	63.7 Gal/Tank	74.2 Gal/Tank	95.2 Gal / Tank	105.7 Gal / Tank	116.2 Gal / Tank	126.7 Gal / Tank	137.2 Gal / Tarrik	147.7 Gal / Tank	158.2 Gel / Tank	168.8 Gal / Tank	170.4 Cal / Tank	240.7 Gal / Tank	100 July 100					
Туре	Ameron	Dualoy 30001. 3" over 2" piping	Dueloy 3000/L. 4" over 3" piping	Dulacy 30001. 6" over 4" pping		Charles 2000 CV 2" piping	Distort 2000 CV At vising	Suide to Volume former	APT	O 5" Double Well Dine	0.7% Deaths Well Dine	4 Of Deable Wast Disc	1.00 LOUGH VANIE TOP	And the Man Pine	1.75 Laube well ripe	Z DOWNE Well Fibe	C2 LOUDIE Wall Pipe		Bravo	Small Foot First Double Wall UDC	Large Foot Print Double Well UDC		42" Double Well Tarrix Sump	48" Double Well Terrik Sump		Small Vent Box	Large Vent Box		Containment Solutions	Double Well Tanks	48º Diameter 550 Collen Canadity	40 Deallers CO Callot Capacity	46 Diameter both Selecti Capacity	48 Liameter 1,000 Gellon Capacity	/z Ulameter 2,000 Gallon Capacity	72 Diameter 2,500 Gallon Capacity	72 Diameter 3,000 Gallon Capacity	72" Diameter 3,500 Gallon Capacity	72" Diameter 4,000 Gallon Capacity	72" Diameter 4,500 Gallon Capacity	72" Diameter 5,000 Gallon Capacity	72" Diameter 6,000 Gallon Capacity	72" Diameter 7,000 Gallon Capacity	72" Diameter 8,000 Gallon Capacity	72" Diameter 9,000 Gallon Capacity	72" Diameter 10,000 Gallon Capacity		92" Diameter 4.000 Gallon Capacity	92" Diameter 5.000 Gallon Capacity	92" Diameter 6,000 Gallon Capacity	92" Diameter 7,000 Gallon Capacity	92" Diameter 8,000 Gelton Capacity	92" Diameter 10,000 Galfon Capacity	92" Diameter 11 000 Galfon Capacity	92" Diameter 12,000 Gallon Capacity	92" Diameter 13.000 Gallon Capacity	92" Diameter 14,000 Gallon Capacity	92" Diameter 15,000 Gallon Capacity	92" Diameter 16,000 Gallon Capacity	92" Diameter 17,000 Galton Capacity	97" Diameter 18 (20) Callon Capacity	92" Diameter 20 000 Gallon Canacity	tonado con contra contra con					