AGRICULTURAL IMPACT STATEMENT

DATCP #4114
Wilson Lateral Natural Gas Pipeline
Dunn County

WISCONSIN DEPARTMENT OF AGRICULTURE,
TRADE AND CONSUMER PROTECTION

Ben Brancel, Secretary
John Petty, Administrator
Division of Agricultural Resource Management
Keith Foye, Director
Bureau of Land and Water Resources
Sara Walling, Chief
Nutrient Management and Water Quality Section
Marilyn M. Weiss, Author

Published October, 20, 2016
Table of Contents

DATCP Summary of Analysis and Recommendations .. 1
 Recommendations to the Public Service Commission .. 1
 Recommendations to Agricultural Property Owners .. 3

I. Introduction .. 4

II. Project Description .. 7
 Overview ... 7
 Project Purpose and Need .. 7
 Description of Potential Routes ... 8
 ROW Requirements and Trench Dimensions .. 9

III. Project Impacts to Agricultural Properties ... 10
 Easements .. 10
 Aboveground Facilities ... 12
 Staging Areas ... 12

IV. Agricultural Setting .. 14
 Agricultural Productivity ... 14
 Land in Agriculture ... 14
 Number and Size of Farms ... 15
 Property Taxes and Values ... 15
 Farmland Preservation ... 16
 Conservation Reserve Program .. 17
 Conservation Reserve Enhancement Program ... 17
 Drainage Districts ... 17

V. Farmland Soils ... 18
 Farmland Soil Definitions ... 18
 Farmland Soils Affected by the Proposed Project ... 18
 Triple-Lift Soils ... 21

VI. Agricultural Landowner Impacts ... 22
 DATCP Survey of Agricultural Property Owners ... 22
 Required Easements ... 22
 Irrigation Systems .. 23
 Organic Farming ... 23
 Specialty Farms ... 24
 Managed Forest Law Enrolled Parcels ... 24
 Other Issues ... 25
 AMP and BMPs and the Role of the Agricultural Inspector 26
 Appraisal and Compensation ... 26

VII. Construction Process ... 28
 Surveying and Staking ... 28
 Clearing, Grubbing, and Grading ... 28
 Pipe Stringing .. 30
 Bending and Welding ... 30
 Trenching .. 30
 Lowering-In ... 31
 Trench Breakers and Tile Repairs .. 31
APPENDIX E: Wisconsin Gas Project

APPENDIX D: Triple-Lift Soil Candidate Key

APPENDIX C: Information Sources

APPENDIX B: DATCP Statutes for Agricultural Impact Statements

APPENDIX A: Acronyms

IX. CONCLUSIONS

x. MAILING LIST

TABLES

Table 1: Acres of New and Existing Easements Required from Farm Operations 10
Table 2: Acres of Selected Crops from 2010 to 2014 ... 14
Table 3: Change in the Number of Farms between 2007 and 2012 15
Table 4: Farm Size Distribution in Dunn County and Wisconsin 15
Table 5: Farmland Taxes and Values ... 16
Table 6: Agricultural Soils Affected by Routes .. 20
Table 7: Acres of Agricultural Land to be acquired from Affected Farmland Owners 22
Table 8: Potential Property Owners with Pivot Agriculture Systems 23
Table 9: Managed Forest Law Properties Crossed by the Proposed ROW 25
FIGURES

Figure 1: Project Overview Map ... 5
Figure 2: Project Route Map ... 6
Figure 3: Existing Versus New Right-of-Way of Affected Farmland 11
Figure 4: Types of Farmland Affected by Potential Routes 11
Figure 5: Example of a Regulator Station with Launcher 13
Figure 6: Examples of Launchers and Receivers 13
Figure 7: Example of a Blowdown Valve Assembly 13
Figure 8: Soils Classification .. 19
Figure 9: Typical Pipeline Construction Cross-Section on Agricultural Land .. 29
DATCP SUMMARY OF ANALYSIS AND RECOMMENDATIONS

The Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) has prepared this Agricultural Impact Statement (AIS) for the proposed Wilson Lateral Natural Gas Pipeline (DATCP #4114) in accordance with Wis. Stat. §32.035. Wisconsin Gas LLC (Wisconsin Gas) submitted information about this project to DATCP in December 2015. It includes approximately 9 miles of 12-inch pipeline along one of two routes, Route A or Route B. The Public Service Commission of Wisconsin (PSC) is the authority that will approve, deny, or make modifications to this project.

As part of its review of the project, DATCP sent a survey to agricultural property owners who may have four or more acres of easement or more acquired if the proposed project is approved by the PSC. Of the 83 property owners along the route, 42 were agricultural properties and 17 of those could have four or more acres of easement acquired. Eight landowners responded to the survey.

Having reviewed all of the materials provided by Wisconsin Gas and property owner comments, DATCP recommends the following actions to mitigate impacts to farmland and farmland operations, if the project is approved.

Recommendations to the Public Service Commission

Wisconsin Gas Initiatives

- The Agricultural Mitigation Plan (AMP) and Best Management Practices (BMPs) supplied by Wisconsin Gas are effective tools in mitigating potential impacts to farm properties. DATCP recommends that Wisconsin Gas implement appropriate training for all construction supervisors, inspectors, and crews to ensure that they understand the implementation of the AMP and BMPs so that the integrity of agricultural lands and operations during project construction and restoration are protected.

- Wisconsin Gas’ commitment to employ an Agricultural Inspector during construction who will be familiar with agricultural operations as well as gas line construction should minimize impacts to agricultural operations and help find appropriate and speedy solutions in the field. DATCP recommends that Wisconsin Gas use an Agricultural Inspector in addition to the Environmental Manager and that the Agricultural Inspector submit weekly reports to DATCP for review. Where useful, the Agricultural Inspector should assist in addressing post-construction problems that arise on agricultural properties after restoration is completed.
Route and Gas Facility Impacts

- Route A is shorter in length, impacts fewer acres of agricultural properties overall, disturbs fewer acres of soils identified as prime farmland, and requires fewer acres of new right-of-way (ROW) than Route B.
- Three aboveground facilities may be constructed as part of this project. DATCP recommends that these facilities be located so as to minimize impacts to actively farmed lands and that Wisconsin Gas work with landowners to determine the location and size of the facilities on their property.

Agricultural Concerns

- DATCP recommends that in areas where weathered bedrock is encountered in the trench, the topsoil is well segregated from subsoils and Wisconsin Gas takes precautions so that the subsoils used for backfill do not have a rock content greater than the surrounding soils as per the AMP.
- DATCP recommends that the Agricultural Inspector inspect the soils where trench excavations would cross Kevilar soil series, to determine if triple-lift soil management would be useful for preserving the productivity of the agricultural land.
- DATCP recommends that property owners with potential triple-lift soils be fully informed by Wisconsin Gas of the benefit of using this soil segregation method for minimizing impacts to crop yields.
- Stephen & Lynn Berg have identified their property as having an organic certification. DATCP recommends that prior to the start of any construction, Wisconsin Gas should identify any properties using organic farming practices. The utility should work with farm operators and their certifying entity to determine site-specific construction practices that would minimize the potential for decertification including the handling of prohibited substances, soil management, erosion control, and weed control. Wisconsin Gas should not apply seed to certified organic farms prior to consultation with the landowner. Additionally, Wisconsin Gas should compensate the landowner for any damages should decertification result from pipeline construction or restoration activities.
- DATCP recommends that if Route B is chosen, Wisconsin Gas work with the landowners (Stabenow and Andrews), in regards to the location of the existing buried 3-phase power line along STH 25 so as to minimize impacts to their properties.
- DATCP recommends that Wisconsin Gas work with property owners to minimize construction impacts to farming operations and infrastructure, including irrigation systems, manure/fertilizer applications, and grassed waterways.
DATCP recommends that, to the extent practicable, Wisconsin Gas should limit the amount of permanent tree clearing required from wood lots and properties enrolled in the Managed Forest Program.

DATCP recommends that Wisconsin Gas work closely with property owners to verify that access to fields and farm residences is considered and minimize impacts as much as possible.

Recommendations to Agricultural Property Owners

- Landowners should examine the language of any easement contract carefully and verify that it contains all agreed-to terms. Landowners should be familiar with the company’s project-specific AMP and BMPs (Appendix E) so as to determine if additional conditions should be negotiated with the utility. Though landowners may choose to waive any or all of the practices and procedures described in the AMP and BMPs, DATCP recommends to only do so with careful consideration.

- Landowners should keep records of the condition of their land within the ROW before, during, and after construction to document any impacts or damage that occurs due to the proposed project. Documentation could include crop yield records and photographs taken every season.

- Landowners with conservation easements within the ROW should consult with the conservation program provider to determine if any effects will occur due to the land’s alteration or removal from the contract. If the landowner is charged a fee for removing or altering the land within the conservation easement, Wisconsin Gas should compensate the landowner that fee.
I. INTRODUCTION

The Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) has prepared this agricultural impact statement (AIS) in accordance with Wis. Stat. §32.035. The AIS is an informational and advisory document that describes and analyzes the potential effects of the project on farm operations and agricultural resources, but it cannot stop a project. The DATCP is required to prepare an AIS when the actual or potential exercise of eminent domain powers involves an acquisition of interest in more than 5 acres of land from any farm operation. The term farm operation includes all owned and rented parcels of land, buildings, equipment, livestock, and personnel used by an individual, partnership, or corporation under single management to produce agricultural commodities.

The AIS reflects the general objectives of the DATCP in its recognition of the importance of conserving important agricultural resources and maintaining a healthy rural economy. DATCP is not involved in determining whether or not eminent domain powers will be used or the amount of compensation to be paid for the acquisition of any property. Refer to Appendix B for the text of Wis. Stat. §32.035. Additional references to statutes that govern eminent domain and condemnation processes are included in Appendix B. Links to other sources of information can be found in Appendix C.

The proposed project requires a Certificate of Authority (CA) from the Public Service Commission of Wisconsin (PSC or Commission) before construction can begin. The PSC will analyze the need for the project and the potential environmental and community impacts in an Environmental Assessment. The Commission will approve, modify, or deny the utility’s application. The PSC docket number for this project is 6650 CG-253. Additional information about this project and the PSC review process can be found on the PSC web site: http://psc.wi.gov/.

Wisconsin Gas has developed for this project an AMP and BMPs. The AMP and BMPs describe the policies to be followed and methods to be used by Wisconsin Gas to avoid or mitigate the potentially adverse impacts on agricultural productivity from the construction of this pipeline. The AMP and BMPs are included in Appendix E of this report.

During construction, Wisconsin Gas has also committed to employ an on-site Agricultural Inspector, in addition to a construction monitor and an environmental manager. The Agricultural Inspector will be familiar with agricultural operations as well as gas line construction.
Figure 1: Project Overview Map
Figure 2: Project Route Map
II. PROJECT DESCRIPTION

Overview
Wisconsin Gas proposes to construct a new 12-inch natural gas pipeline along one of two routes, Route A or Route B. Figure 1 shows the general location of this project as well as the Dovre Lateral natural gas line that Wisconsin Gas is proposing to construction in Dunn County. Figure 2 shows the Wilson project in more detail. Route A is approximately 8.2 miles and Route B is approximately 9.5 miles in length. The project would cross through the towns of Hay River, Otter Creek, Wilson, and Sheridan in Dunn County. The routes begin in the town of Hay River along County Trunk Highway (CTH) N at the existing Wheeler Gate Station and travel north through private properties and alongside road rights-of-way (ROW), existing electric transmission lines, and existing natural gas pipelines. It would end by tying into an existing 8 inch natural gas main near the intersection of CTHs W and WW, in the town of Wilson.

Figure 1 shows the location of the proposed Wilson natural gas pipeline routes as well as the Dovre Lateral natural gas pipeline project (DATCP # 4109, PSC # 6650-CG-252) both proposed by Wisconsin Gas. The Dovre project location is approximately six miles to the north of the Wilson project in Barron County. The Dovre project has been proposed by Wisconsin Gas to also meet increased demand for natural gas in the area.

An application for this project was submitted to the PSC on December 21, 2015. If the project is approved by the Commission, Wisconsin Gas anticipates acquiring easements beginning in January 2017 and construction occurring from March to November of 2018.

Project Purpose and Need
Wisconsin Gas has indicated that this project would provide additional natural gas capacity to meet the growing demand for natural gas in the area. Currently Wisconsin Gas receives natural gas supplies from Viking Gas Transmission (Viking) and Northern Natural Gas pipelines (Northern). Wisconsin Gas states that the projected increased capacity need in this area would require a contractual agreement of over 600 pounds per square inch (psig). Viking facilities are unable to guarantee pressure any higher than the current 500 psig. Wisconsin Gas has determined that the Wilson Lateral project would increase the capacity of the pipelines and thus ensure that all firm customers are adequately served.

Property owners along the proposed Wilson Lateral pipeline that are either adjacent to the public ROW or adjacent to the project’s permanent easement can request natural gas service from the Wilson pipeline. Landowners that are not directly adjacent can also request natural gas service from Wisconsin Gas. The utility reviews all customer requests for service on a case-by-case basis. Interested property owners should contact Wisconsin Gas for further details.
Description of Potential Routes

The proposed routes, A and B, make use of common segments at the northern and southern ends of the routes. At the southern end, there is a short common segment totaling 227 feet in length and referred to as Segment AB1. At the northern end of the project is a 1.3-mile common segment, referred to as Segment AB2. Figure 2 shows the proposed routes.

Route A (from south to north)

- Starts at the Wheeler Gate station located along CTH N, in the town of Hay River
- East on private property along the north side of the CTH N ROW
- North on private property along the west side of 520th Street
- East cross-country straddling parcel boundary
- Northeast diagonally cross-country under Otter Creek towards the intersection of CTH S and 1090th Avenue
- North on private property along the west side of CTH S
- Continuing north on private property along the west side of 570th Street
- Continuing north on private property and paralleling along the west side of existing Northern States Power (NSP) 69 kilovolt (kV) electric transmission line corridor until reaching 1140th Avenue
- Continuing north crossing to the east side of the NSP electric line and partially overlapping the electric ROW
- East briefly and continuing to partially overlap the north side of the NSP electric transmission line ROW
- North continuing to partially overlap the west side of the NSP electric transmission line across State Trunk Highway (STH) 64, 1250th Avenue, and 1280th Avenue
- Ends by tying into the existing 8-inch steel main near the intersection of CTHs W and WW, in the town of Wilson

Route B (from south to north)

- Starts at the Wheeler Gate station located along CTH N, in the town of Hay River
- West on private property, adjacent to the north side of CTH N
- Northwest adjacent to the Viking natural gas transmission pipeline easement
- North on private property adjacent to the east side of STH 25, though at some locations veers away from the highway to avoid impacts to small residential lot and topographic changes
- Continues north along STH 25 on private property and crosses to the east side of the highway
- West briefly on private property adjacent to the north side of STH 64
- North on private property near the west side of 480th Street
- North and northwest cross-country through private property towards 1250th Avenue
Crosses 1250th Avenue and turns west, crossing 490th Street
West on private property mostly along the north side of 1250th Avenue in a mostly straight line and not closely following the curves of the road
North cross-country, east of the parcel boundary on private property.
East cross-country north of the parcel boundary on private property.
Angling north east crossing STH 25 and 1280th Avenue on private property
East on private property along the north side of 1280th Avenue.
North partially overlapping the west side of the existing 69 kV NSP electric transmission line
Ends by tying into the existing 8-inch steel main near the intersection of CTHs W and WW in the town of Wilson

ROW Requirements and Trench Dimensions
The project would require a permanent easement of up to 50 feet in width. An additional, 25 to 50 feet of temporary easement width would be acquired to accommodate construction needs, bringing the total work space ROW width that could be disturbed during construction to between 75 and 100 feet. The temporary easement would be restored and released when construction is completed. The wider temporary easement of 50 feet would be used in agricultural areas to accommodate segregated soil storage. Larger areas of temporary easement would also be needed in areas where the pipeline would be installed using horizontal directional drilling (HDD) construction instead of open trenching. See Sections VII and VIII of this report for more information about potential construction impacts. In other areas of the proposed routes, Wisconsin Gas may acquire narrower temporary construction easements to minimize impacts to resources.

The excavated trench would be approximately 5 feet deep and 4 feet wide. In some areas where there are obstacles, such as existing pipelines, the excavated trench may need to be deeper and wider. In agricultural lands, trench depth will be sufficiently deep to allow a minimum of four feet of soil cover over the top of the pipeline.

The natural gas pipeline would be constructed in an open trench for much of the route, although HDD construction is proposed to be used along Route A for the two crossings of Otter Creek and its associated wetlands, and for the crossings of 1090th Avenue and STH 64. For Route B, HDD construction would be used under the three crossings of STH 25, as well as the crossings of 480th Street, 1250th Avenue, 490th Street, and 1280th Street. HDD would also be used along Route B to avoid impacts to the Blairmoor Branch River and an unnamed waterway. For the common Segment AB2, HDD construction would be used along an existing electric transmission line corridor in two locations approximately 1,800 feet and 1,700 feet in length to avoid impacts to woodlands, an unnamed creek, and the Blairmoor Branch River and its associated wetlands.
III. PROJECT IMPACTS TO AGRICULTURAL PROPERTIES

Easements

Both Routes A and B will impact agricultural properties.

Route A would require approximately 87 acres of permanent and temporary easements from farmland operations, whereas Route B would require approximately 107 acres of easements from farmland operations. In an attempt to reduce the impact to private properties, easements are often located so as to overlap a road, other gas lines, or electric line ROWs. The portion of the ROW that overlaps another ROW is termed, an existing easement. Table 1 shows the acres of permanent and temporary easements that would be new or overlap an existing easement for the projects routes. Additionally, it identifies the percentage of the full ROW (temporary and permanent) that would be new impacts to agricultural properties.

Table 1: Acres of New and Existing Easements Required from Farm Operations

<table>
<thead>
<tr>
<th>Route/Segments</th>
<th>Permanent Easements</th>
<th>Temporary Easements</th>
<th>Percentage of New ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New ROW</td>
<td>Existing ROW</td>
<td>New ROW</td>
</tr>
<tr>
<td>Route A</td>
<td>14.92</td>
<td>3.97</td>
<td>36.62</td>
</tr>
<tr>
<td>Route B</td>
<td>23.37</td>
<td>3.22</td>
<td>49.48</td>
</tr>
<tr>
<td>Common Segments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB1 and AB2</td>
<td>0.36</td>
<td>2.63</td>
<td>27.04</td>
</tr>
</tbody>
</table>

NOTE: This includes all identified access routes and staging areas.

As Table 1 illustrates, Route A requires fewer acres of new permanent and temporary ROW than Route B.

Figures 3 and 4 show the acres of new and permanent ROW and the type of farmland that would be impacted by each route, excluding the laydown and staging areas. The project routes cross farmland that is primarily cropland with some specialty agriculture and pasture. Specialty agriculture includes unique cropland such as Christmas tree farms, organic farms, orchards, vineyards, nurseries, ginseng, etc.

No farm buildings or structures will be acquired for this project.
Figure 3: Existing Versus New Right-of-Way of Affected Farmland

Figure 4: Types of Farmland Affected by Potential Routes
Aboveground Facilities

There are three general locations with proposed aboveground facilities, on the south end of the project at the Wheeler Gate station (Segment AB1), in the middle of the project (either Route A or Route B), and on the north end of the project at the tie-in location (Segment AB2). If the project is approved by the PSC, facility specifics will be determined by Wisconsin Gas and shared with potentially impacted property owners, however in their application, the following details about aboveground facilities are known.

- On the south end, the aboveground facilities will fit within the existing fenced area of the Wheeler Gate Station but minimal expansion may be required.
- In the middle of Route A or Route B (depending on the route selected by the Commission), a 20 x 20 foot easement may be required from private property.
- On the north end of the project, a 20 x 20 foot easement may be required from private property.

Unlike the ROW required for this project, both temporary and permanent, the land required for aboveground facilities will take agricultural land permanently out of production. Figures 5, 6, and 7 show examples of a typical natural gas aboveground facility.

DATCP recommends that the aboveground facilities be located so as to minimize impacts to actively farmed lands and to work with landowners to determine the location and size of the facilities on their property.

Staging Areas

Wisconsin Gas has identified seven staging sites, which may be used to store construction equipment and materials during the construction of the project. It is uncertain whether all of the identified staging areas are necessary or would be used. Finalization of staging areas and the size of the staging areas will occur following approval of the project by the PSC. Staging sites may be larger than the finalized staging area. Four staging sites are located near the northern end of the routes, north of CTH WW and west of CTH WW in the town of Wilson. Two staging sites are located near the southern end of the project at the intersection of CTH N and 520th Street in the town of Hay River. One staging site is located along Route B, off of 1170th Avenue, east of STH 25, also in the town of Hay River. All staging areas are agricultural cropland areas that range in size from 2.3 to 19.3 acres. Staging areas are typically established on property where the owner(s) voluntarily agrees. This land would be restored after the project is completed.
Figure 5: Example of a Regulator Station with Launcher

Figure 6: Examples of Launchers and Receivers

Figure 7: Example of a Blowdown Valve Assembly
IV. AGRICULTURAL SETTING

The following information is intended to describe the existing agricultural sector of Dunn County in general terms and to aid agricultural property owners in their easement negotiations with the utility. Section VI, Agricultural Landowner Impacts discusses the specific potential impacts from this project and the concerns of agricultural property owners. The majority of the data provided in this section was obtained from the USDA, National Agricultural Statistic Service, Quick Stats Tool on the web page: https://quickstats.NASS.usda.gov (accessed in April and May of 2016).

Agricultural Productivity

Dunn County ranked sixteenth out of Wisconsin’s 72 counties in the value of agricultural products sold. The county was first in dry edible bean production, second in turkey production, sixth in the production of vegetables and soybeans, and seventh in corn for grain production in 2012.

Table 2 shows the acres harvested of selected crops in Dunn County for the years from 2010 to 2014. The acres of harvested corn for grain peaked in 2012 due to high prices; whereas, the acres devoted to soybeans fluctuated over the same five-year period, ending in a modest increase by 2014. Alfalfa hay acreage has remained steady over the years due to the dairy industry.

Table 2: Acres of Selected Crops from 2010 to 2014

<table>
<thead>
<tr>
<th>Crop</th>
<th>Harvested Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>Corn for Grain</td>
<td>81,800</td>
</tr>
<tr>
<td>Soybeans</td>
<td>49,500</td>
</tr>
<tr>
<td>Alfalfa Hay</td>
<td>31,200</td>
</tr>
</tbody>
</table>

Land in Agriculture

Dunn County is classified as a rural county, which is defined as a county having less than 100 persons per square mile. The U.S. Census Bureau approximates that Dunn County in 2015 had a population density of 52 persons per square mile; half the average density for the entire state (approximately 106 persons per square mile). The majority of Dunn County (68.4 percent) is used for agriculture and consists primarily of crops, pasture, and grazing. It also includes other uses such as woodland and wasteland not actually under cultivation or used for pasture or grazing. Dunn County is intensively farmed compared to the state-wide average of 202,346 acres or 42 percent of land in farms.

From 2007 to 2012, the acres of land farmed decreased by 3 percent in Dunn County similar to the trend observed for the state as a whole (USDA NASS 2012 Census of Agriculture). These changes in agricultural land use are likely the result of commercial and residential development forces on agricultural properties rather than because of idling of formerly productive farmland.
Wilson Lateral Natural Gas Pipeline

Agricultural Impact Statement

Number and Size of Farms

Dunn County in 2007 had 1,690 farms. Between the years 2007 and 2012, the county lost 286 farms (a 17 percent decrease). The state of Wisconsin lost only 12 percent of its farms (Table 3). Over the same period in Dunn County, the average size of a farm increased to 265 acres; a 39-acre increase (17 percent increase). As a result of these changes, the county has fewer small farms (less than 50 acres) and more farms that are greater than 500 acres (Table 4). When this and other economic and demographic pressures on a farm operation become strong enough, a farmer may be forced to downsize their operation; change the type of operation, such as switching from livestock to cash grain; or closing the farm business and either renting the farmland to another operator or developing the land.

Table 3: Change in the Number of Farms between 2007 and 2012

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Farms (2012)</th>
<th>Number of Farms (2007)</th>
<th>Change in the Number of Farms</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunn County</td>
<td>1,404</td>
<td>1,690</td>
<td>286</td>
<td>-17</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>69,754</td>
<td>78,463</td>
<td>8,709</td>
<td>-12</td>
</tr>
</tbody>
</table>

Table 4: Farm Size Distribution in Dunn County and Wisconsin

<table>
<thead>
<tr>
<th>Location</th>
<th>0 to 49 Acres</th>
<th>50 to 179 Acres</th>
<th>180 to 499 Acres</th>
<th>More than 500 Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
<td>Percent</td>
</tr>
<tr>
<td>Dunn County</td>
<td>337</td>
<td>24</td>
<td>579</td>
<td>41</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>22,428</td>
<td>32</td>
<td>25,502</td>
<td>37</td>
</tr>
</tbody>
</table>

Property Taxes and Values

Table 5 details the 2013 average property tax, assessed value, and sale price per acre of agricultural land in Dunn County, rural counties, and all Wisconsin counties. The assessed values and property taxes are based on the use value of “agricultural land”. Agricultural land is defined by statute as, “...land, exclusive of buildings and improvements, and the land necessary for their location and convenience, that is devoted primarily to agricultural use.” (Wis. Stat. §70.32(2)(c)1g) In addition to being used to compute easement values; property taxes, assessed values, and land sales data provide information on the demand for land in the county. Land values are used as collateral for farm operation loans. High values make farm expansions more expensive.
Table 5: Farmland Taxes and Values

<table>
<thead>
<tr>
<th>Location</th>
<th>Average Tax</th>
<th>Assessed Value</th>
<th>Sale Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunn County</td>
<td>$2.97</td>
<td>$143</td>
<td>$3,199</td>
</tr>
<tr>
<td>Rural Counties</td>
<td>$3.04</td>
<td>$164</td>
<td>$3,599</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>$3.32</td>
<td>$171</td>
<td>$4,442</td>
</tr>
</tbody>
</table>

Source: USDA, National Agricultural Statistic Service and Wisconsin Department of Revenue

The average assessed value of farmland in Dunn County was 13 percent lower than for rural counties and 16 percent lower than the State of Wisconsin as a whole (Wisconsin Department of Revenue). Similarly, the average sale price of farmland in Dunn County was 11 percent lower than the average for rural counties and 28 percent lower than the average for the state. Sale price data does not include farmland sold and converted to nonfarm use nor agricultural land with buildings or improvements.

In 2014, average property taxes for Dunn County agricultural land was 2 percent lower than the average for rural counties and 10 percent lower than the average for Wisconsin (Wisconsin Department of Revenue).

Farmland Preservation

Wisconsin’s Farmland Preservation Program (FPP) provides counties, towns, and landowners with tools to aid in protecting agricultural land for continued agricultural use and to promote activities that support the larger agricultural economy. Through this program, counties adopt state-certified farmland preservation plans, which map areas identified as important for farmland preservation and agricultural development based upon reasonable criteria. DATCP first certified the Dunn County Farmland Preservation Plan in 1982 and recertified it in 2016. The plan identifies farmland preservation areas in the county and local governments may choose to adopt an exclusive agricultural zoning ordinance to ensure that landowners covered by the ordinance are eligible to claim farmland preservation tax credits. Such an ordinance must also be certified by DATCP.

Within these farmland preservation areas, local governments and owners of farmland can petition for designation by the state as an Agricultural Enterprise Area (AEA). This designation highlights the importance of the area for agriculture and further supports local farmland preservation and agricultural development goals. Designation as an AEA also enables eligible landowners to enter into farmland preservation agreements. Through an agreement, a landowner agrees to voluntarily restrict the use of their land for agriculture for fifteen years.

Both AEAs and FPP zoning areas are required to follow the state soil and water conservation standards to protect water quality and soil health. None of the land that could be acquired for
this project is part of an AEA. The farmland that could be affected by the proposed project is all zoned for general agricultural use and is not eligible for exclusive agricultural zoning tax credits.

Conservation Reserve Program

The Conservation Reserve Program (CRP) offers farmers financial incentives to convert highly erodible or environmentally sensitive cropland to permanent vegetative cover by planting species that will enhance the environment. None of the easements for this project appear to cross enrolled in CRP.

Conservation Reserve Enhancement Program

The Conservation Reserve Program and Enhancement (CREP) pays landowners to install filter strips along waterways or to return continually flooded fields to wetlands while leaving the remainder of the adjacent land in agricultural production. CREP is a joint effort between the federal, state, and county governments. None of the easements for this project appear to cross enrolled in CREP.

Drainage Districts

Drainage districts are formed to manage excess water from participating lands. There are no drainage districts identified in the Dunn County.
V. FARMLAND SOILS

Farmland Soil Definitions
Farmland soil is classified by the USDA based on its ability to produce crops. Protection of prime farmland, prime farmland, if drained, and farmland of statewide importance should be a priority for construction projects.

Prime Farmland
Land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is also available for these uses. It has the soil quality, growing season, and moisture supply needed to produce economically sustained high yields of crops when treated and managed according to acceptable farming methods, including water management. In general, prime farmlands have an adequate and dependable water supply from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, acceptable salt and sodium content, and few or no rocks. They are permeable to water and air. Prime farmlands are not excessively erodible or saturated with water for a long period of time, and they either do not flood frequently or are protected from flooding.

Prime Farmland if Drained
This farmland is prime farmland but requires draining in order to have the best combination of physical and chemical characteristic for producing food, feed, forage, fiber, and oilseed crops.

Farmland of Statewide Importance
In addition to prime farmland, this farmland is of statewide importance for the production of food, feed, fiber, forage, and oilseed crops. Criteria for defining and delineating this land are to be determined by the appropriate state agency or agencies. Generally, additional farmlands of statewide importance include those that are nearly prime farmland and that economically produce high yields of crops when treated and managed according to acceptable farming methods. Some may produce as high a yield as prime farmlands if conditions are favorable. In some states, additional farmlands of statewide importance may include tracts of land that have been designated for agriculture by state law.

Non-prime soils
Non-prime soils have limitations in terms of agricultural production and may be more susceptible to damage from pipeline construction.

Farmland Soils Affected by the Proposed Project
Figure 6 details the acres of prime farmland, prime farmland if drained, and farmland of statewide importance that would be potentially impacted by the proposed route alternatives. A list of the farmland soils that may be affected by the project are presented in Table 6. Analysis
shows that the majority of soils in the project area are not prime farmland. However along common Segment AB2 and the southwest portion of Route B, there are agricultural soils designated as prime farmland and farmland of statewide importance. Route B would impact slightly more high quality agricultural soils than construction on Route A.

Figure 8: Soils Classification

The majority of the soils crossed by the routes are sandy and sandy loam soils. Weathered bedrock will be encountered during some trench excavation, primarily along Route A, in the Town of Wilson. For these soils, rock trenchers are typically used to create a trench of adequate depth through the fractured bedrock. If there is insufficient stockpiled subsoils to refill the trench, sand may be brought in to supplement the fill. Post-construction, productivity over the former trench can be affected if the subsoil in the trench contains significantly more inorganic material and/or the rock content and rock size are greater than the surrounding soils. DATCP recommends that in areas where weathered bedrock is encountered in the trench, the topsoil is well segregated from subsoils and the subsoils used for backfill do not have a rock content greater than the surrounding soils.
Table 6: Agricultural Soils Affected by Routes

Shaded cells identify soils that are Prime Farmland, Prime Farmland if drained, and Farmland of Statewide Importance.

<table>
<thead>
<tr>
<th>Soil Symbol</th>
<th>Soil Description</th>
<th>Route A</th>
<th>Route B</th>
</tr>
</thead>
<tbody>
<tr>
<td>273B2</td>
<td>Dobie and Hixton silt loams, 2 to 6 percent slopes, moderately eroded</td>
<td>5.20</td>
<td>5.20</td>
</tr>
<tr>
<td>273C2</td>
<td>Dobie and Hixton silt loams, 6 to 12 percent slopes, moderately eroded</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>273D2</td>
<td>Dobie and Hixton silt loams, 12 to 20 percent slopes, moderately eroded</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>275B2</td>
<td>Hayriver and E elevasil fine sandy loams, 2 to 6 percent slopes, moderately eroded</td>
<td>1.30</td>
<td>0.00</td>
</tr>
<tr>
<td>275C2</td>
<td>Hayriver and E elevasil fine sandy loams, 6 to 12 percent slopes, moderately eroded</td>
<td>2.50</td>
<td>1.40</td>
</tr>
<tr>
<td>275D2</td>
<td>Hayriver and E elevasil fine sandy loams, 12 to 20 percent slopes, moderately eroded</td>
<td>3.30</td>
<td>0.40</td>
</tr>
<tr>
<td>282C</td>
<td>Twinmound fine sand, 6 to 15 percent slopes</td>
<td>0.70</td>
<td>0.00</td>
</tr>
<tr>
<td>429A</td>
<td>Lows loam, 0 to 2 percent slopes, rarely flooded</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>432A</td>
<td>Kevilar sandy loam, 0 to 3 percent slopes</td>
<td>0.00</td>
<td>0.80</td>
</tr>
<tr>
<td>432B</td>
<td>Kevilar sandy loam, 2 to 6 percent slopes</td>
<td>0.20</td>
<td>5.70</td>
</tr>
<tr>
<td>432C2</td>
<td>Kevilar sandy loam, 6 to 12 percent slopes, moderately eroded</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>511A</td>
<td>Plainfield sand, 0 to 3 percent slopes</td>
<td>18.90</td>
<td>24.90</td>
</tr>
<tr>
<td>511B</td>
<td>Plainfield sand, 2 to 6 percent slopes</td>
<td>2.30</td>
<td>5.00</td>
</tr>
<tr>
<td>511C</td>
<td>Plainfield sand, 6 to 15 percent slopes</td>
<td>1.20</td>
<td>0.60</td>
</tr>
<tr>
<td>512B</td>
<td>Drammen loam sand, 1 to 6 percent slopes</td>
<td>7.30</td>
<td>17.50</td>
</tr>
<tr>
<td>512C</td>
<td>Drammen loam sand, 6 to 12 percent slopes</td>
<td>1.10</td>
<td>1.60</td>
</tr>
<tr>
<td>516A</td>
<td>Aldo sand, 0 to 3 percent slopes</td>
<td>0.00</td>
<td>0.40</td>
</tr>
<tr>
<td>546C</td>
<td>Prissel loamy sand, 6 to 15 percent slopes</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>573B</td>
<td>Plainbo sand, sand sheet, 0 to 6 percent slopes</td>
<td>1.30</td>
<td>0.00</td>
</tr>
<tr>
<td>573C</td>
<td>Plainbo sand, sand sheet, 6 to 15 percent slopes</td>
<td>0.20</td>
<td>0.00</td>
</tr>
<tr>
<td>588A</td>
<td>Meehan loamy sand, valley train, 0 to 3 percent slopes</td>
<td>0.60</td>
<td>0.00</td>
</tr>
<tr>
<td>589A</td>
<td>Newson mucky loamy sand, 0 to 2 percent slopes</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>619A</td>
<td>Vancecreek silt loam, 0 to 2 percent slopes, frequently flooded</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>804D</td>
<td>Arland fine sandy loam, 12 to 25 percent slopes, dissected</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>1275F</td>
<td>Hayriver-Twinmound complex, 15 to 50 percent slopes</td>
<td>0.90</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Triple-Lift Soils

The triple-lift soil segregation procedure (also known as three-lift soil handling) is recommended for lands intended for crop or pasture and where the mixing of the subsoil layers may result in persistent crop yield reductions. For agricultural soils, the typical pipeline construction practice is to segregate the topsoil (typically the top 12 inches) from the remainder of the excavated subsoils. In contrast, triple-lift requires the stockpiling of the topsoil, subsoil, and substratum in three separate piles. The last material removed from the trench is the first material backfilled into the trench. Additional ROW width may be required for the additional stockpiles.

Triple-lift soil management is useful when the proposed trench will intersect both the B and C horizons of a soil profile and the C horizon is of poorer quality (gravel, rock, and/or sand) than the B horizon (silt, clay, and/or loam). Alternatively this practice may be applicable to soil profiles with a distinct upper and lower B horizon, as opposed to a B and C horizon. Additional factors such as slope, soil drainage, thickness of the soil horizons, and acres of soil units crossed by the project are important in determining soil candidates for which triple-lift may be beneficial for protection of crop yields. A key for identifying soil candidates for triple-lift is provided in Appendix D. Using the soil characteristics and descriptions compiled by the USDA, Natural Resources Conservation Service’s (NRCS) Web Soil Survey, a desktop review of the project area identified a few soils and potential areas that would benefit from this type of soil management. For a final determination of triple-lift soils, the characteristics of the soils must be verified in the field by the Agricultural Inspector. (See Appendix E, BMP 09: Three-lift Soil Handling for additional information.)

Both project routes cross two members of the Kevilar soil series (432B and 432C2) which are candidate soils for triple-lift soil management. The upper B horizon of the Kevilar soils are sandy loam soils which overlie a lower B horizon of sand. There is approximately 3,000 linear feet of Kevilar soils crossed by Route B along STH 25 and where the route angles southeast towards CTH N in the town of Hay River. Route B crosses the following three agricultural properties with Kevilar soils potentially suitable for triple-lift soils management:

- Jason & Rebecca L. Martin property, cropland
- Bryan E. Andrews property, cropland
- Craig W. & Mary Anne Conklin, Christmas Tree and Nursery Production

No significant length of potential triple-lift soils were identified within the proposed ROW of Route A; however, this should be verified in the field by the Agricultural Inspector.

DATCP recommends that the Agricultural Inspector inspect the soils where trench excavations would cross Kevilar soil series, to determine if triple-lift soil management would be useful for preserving the productivity of the agricultural land.
VI. AGRICULTURAL LANDOWNER IMPACTS

DATCP Survey of Agricultural Property Owners

DATCP sent a survey to agricultural property owners who could have easement acquisitions of 4 acres or more. Of the 83 property owners along the routes, 42 were agricultural properties and 17 could have 4 or more acres acquired for the proposed project. Eight property owners responded with comments.

Table 7 lists the acreages of agricultural easements that would be acquired for each of the potential routes. Additional non-agricultural acres would be required for the construction of this project.

Required Easements

The following table lists the acreages of agricultural easements (permanent and temporary) that would be acquired if the Wilson Lateral natural gas project is approved by the PSC.

Table 7: Acres of Agricultural Land to be acquired from Affected Farmland Owners

<table>
<thead>
<tr>
<th>Farmland Owners</th>
<th>Route A (acres)</th>
<th>Route B (acres)</th>
<th>Common Segments AB1 & AB2* (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrews, Bryan E.</td>
<td>4.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berg, Stephen M. & Lynn M.</td>
<td></td>
<td>12.86</td>
<td></td>
</tr>
<tr>
<td>Beskar, Robert T.</td>
<td>8.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beskar, William H. & Pauline M.</td>
<td>28.75</td>
<td>37.52</td>
<td></td>
</tr>
<tr>
<td>Buckeye Ridge Farm LLC</td>
<td></td>
<td></td>
<td>3.95</td>
</tr>
<tr>
<td>Conklin, Craig W. & Mary Anne</td>
<td></td>
<td>4.10</td>
<td></td>
</tr>
<tr>
<td>John E Beskar Family Trust</td>
<td>7.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maves, Donald J & Peggy L</td>
<td>4.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moen, Robert D. & Bess K.</td>
<td>11.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Our Family LLP</td>
<td></td>
<td>21.08</td>
<td></td>
</tr>
<tr>
<td>Rogers, Daniel H. & Donna M.</td>
<td></td>
<td></td>
<td>9.37</td>
</tr>
<tr>
<td>Rudie, Jonathan L.</td>
<td>2.07</td>
<td>2.78</td>
<td>4.7</td>
</tr>
<tr>
<td>Schlough, David A. & Denise</td>
<td></td>
<td>7.56</td>
<td></td>
</tr>
<tr>
<td>Shipley, Neil T. & Joy C.</td>
<td></td>
<td></td>
<td>6.03</td>
</tr>
<tr>
<td>Stabenow, Larry D. & Audrey A.</td>
<td></td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>Warner, Mark M & Lena</td>
<td>6.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisitions of less than 4 acres from multiple landowners</td>
<td>7.34</td>
<td>55.58</td>
<td>4.43</td>
</tr>
</tbody>
</table>
Irrigation Systems

Between 60 and 75 percent of the soils crossed by the routes are predominantly sandy soils (depending on the route chosen). These are soils that tend to benefit from irrigation and are thus likely to have irrigation systems in place. Construction of this natural gas line can affect field operations by limiting the times when the irrigation system can operate or by potentially causing damage to the system. An aerial review of the routes indicate a number of large and active pivot irrigation systems may exist along the proposed routes (Table 8). Coordination between the landowner and Wisconsin Gas is necessary to minimize the impacts to these fields and the systems. Wisconsin Gas has detailed in its Agricultural Mitigation Plan that landowners will be notified prior to any disruption to the water flow in the irrigation systems. Any damage to the irrigation system caused by construction activities would be repaired as soon as reasonably possible by the utility. Additional information about the range of impacts that could affect cropped land with irrigation systems and potential mitigations are included in Section VIII of this report. The following property owners appear to have pivot irrigation systems.

Table 8: Potential Property Owners with Pivot Agriculture Systems

<table>
<thead>
<tr>
<th>Route A</th>
<th>Route B</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Beskar Family Trust</td>
<td>William H. & Pauline M. Beskar</td>
</tr>
<tr>
<td>William H. & Pauline M. Beskar</td>
<td>Our Family LLP</td>
</tr>
<tr>
<td>Robert T. Beskar</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Observations based on 2013 National Agriculture Imagery Program aerial images.

Organic Farming

Stephan & Lynn Berg, Segment AB2

Stephen & Lynn Berg have submitted comments that identify their property as having an organic certification for cropland. They are concerned about maintaining the organic certification as well as wanting no aboveground facilities on their property. Within the Berg property, located at the north end of the routes near the intersection of CTHs W and WW, the proposed natural gas pipeline would tie into the existing pipeline and would require a permanent 20 x 20-foot easement for an aboveground facility. Additionally there are several staging areas proposed by Wisconsin Gas on the Berg property. Protections from hazardous materials and waste may be necessary to maintain the organic status on the land selected to be used for staging. Other potential impacts for organic lands include invasive species on newly disturbed land and the potential use of herbicides on stockpiled soils. Unless the landowners are strongly in favor of allowing their land to be used for a laydown yard, Wisconsin Gas might consider finding conventional cropland for their laydown yard. However, if this is not possible, the utility should work with the landowners to determine the location and size of the aboveground facilities and appropriate construction activities to minimize the potential for decertification of their farmland. Additionally, Wisconsin Gas should compensate the land owner for any damages should decertification result from pipeline construction or restoration activities.
Specialty Farms

Specialty farms are unique cropland that includes, but is not limited to fields used to grow vegetables, Christmas trees, fruit trees, plants and trees for landscape purposes, cranberries, ginseng, fruit, hops, and grapevines. The construction and operation of a project may have significantly different effects on specialty farms than the impacts that typically affect conventional cropland. Thus the utility should be aware of these specialty farms and work with farm operators to gain an understanding of any additional construction requirements necessary to avoid, minimize, or mitigate impacts during construction, restoration, and operation.

Craig & Mary Anne Conklin, Route B, along CTH N

Route B crosses diagonally through the Conklin property near the intersection of STH 25 at the southern end of Route B. At this location, the route parallels and crosses over the existing Viking natural gas line, requiring a wider ROW. This property is a Christmas and nursery tree farm. The wider ROW may increase the area where existing trees would be removed and the amount of land taken out of production for this use.

Michael D. & Nora J. Shaide, Route B, intersection of STH 25 and 1130th Road

This property is listed by Wisconsin Gas as a pine plantation. While the 2013 aerial photo did not show any trees within the ROW, any subsequently planted trees would be removed, if Route B was chosen. The landowner may choose to keep the wood from the cleared ROW.

Scott G. Vandeberg, Route B, adjacent to STH 25, town of Hay River

If Route B is chosen, approximately one acre of the evergreen nursery would be removed from production.

Managed Forest Law Enrolled Parcels

Natural gas line construction through wooded parcels requires the complete removal of all trees within the ROW. This could negatively impact properties enrolled in the Managed Forest Law (MFL) program. The program requires that not more than 20 percent of the land be in a non-productive state (not growing trees). If the amount of productive woodland falls below 80 percent, the property might be dropped from the program when the contract expires, and the property owner may suffer a monetary loss. Table 9 identifies the property owners that could lose woodlands enrolled in the MFL program.

To the extent practicable, DATCP recommends that Wisconsin Gas limit the amount of permanent tree clearing required from wood blocks and properties enrolled in the MFL program.
Table 9: Managed Forest Law Properties Crossed by the Proposed ROW

<table>
<thead>
<tr>
<th>Route A</th>
<th>Route B</th>
<th>Segment AB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryn E. Volkman</td>
<td>Larry D & Audrey A. Stabenow</td>
<td>Eric G. & Aaron R. Mittlestadt</td>
</tr>
<tr>
<td>Thorsten F. & Shirley A. Edgeberg</td>
<td>Michael D & Nora J. Shaide</td>
<td>Thomas L. & Robyn J. Shipley</td>
</tr>
<tr>
<td>John H. & Judith I. Jourdan</td>
<td>William H. & Pauline M. Beskar</td>
<td>Randall E. Mickelson</td>
</tr>
<tr>
<td>Manny, Nicole Robertson, Victor, David</td>
<td>Lena, Terrence, Mary Ann Waldbuesser</td>
<td></td>
</tr>
<tr>
<td>Robert D. & Bess K. Moen</td>
<td>Lowell R. & Kevin L. Prange & McIntyre</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: There were no identified MFL properties along Segment AB1

Other Issues

Through the survey process, other issues were identified by landowners as potential concerns related to the construction of this project. These issues are described below.

Robert D. & Bess K Moen, Route A, north and south of STH 64

In the vicinity of the Moen properties, Route A is located along the parcel boundaries and an existing electric transmission line. The property owner is concerned about the project limiting access to land locked properties and impacts to parcels enrolled in the MFL program.

Bryan E. Andrews Route B, adjacent to STH 25

Bryan Andrews is concerned about the proposed alignment of the natural gas line as it relates to a newly buried 3-phase power line, adjacent to STH 25. The proposed ROW is located wholly within the Andrews property and does not overlap the DOT ROW. To maintain the necessary 3-foot separation between the power line and the new gas line, the proposed ROW may need to be widened or relocated further into the interior of the property, potentially causing greater impacts. The property owner is also concerned about potential loss of development opportunities and impacts to farming operations such as whether heavy farm equipment will continue to be able to work over the trench. Also there is a recorded mineral lease on the property and there is concern whether the existence of the gas line would limit potential future land use opportunities.

Larry D & Audrey A. Stabenow, Route B, adjacent to STH 25

Similar to the Andrews, the Stabenows are concerned about the location of the proposed Route B ROW as it relates to the newly buried 3-phase power line, adjacent to STH 25. The proposed ROW is located wholly within the Stabenow property and does not overlap the DOT ROW. To maintain the necessary 3-foot separation between the power line and the new gas line, the proposed ROW may need to be widened or relocated further into the interior of the properties. Furthermore, the Stabenow property is enrolled in the MFL program. Removal of trees may affect the landowners’ participation in the program. Lastly, the property owners are concerned about access to two driveways during construction.
David & Denise Schlough, Route B, town of Wilson

Near the intersection of STH 25 and 1280th Avenue, the property owners have a semi-truck parking lot and a new sewer drain field. The property owners have concerns about access to this parking lot during construction and potential impacts to the sewer drain field. HDD construction is proposed for this area, which should minimize the impacts to the parking lot. However, construction in and around the drain field may be an issue. Wisconsin Gas should consult with the property owners prior to the start of construction and verify that impacts are minimized.

Jonathan Rudie, Segment AB2, Routes A and B.

Parcels owned by Johnathan Rudie, along Segment AB2 and the existing electric transmission line are enrolled in the MFL Program. The property owner is also concerned about erosion control, field access, parcel severance, firewood, and lumber.

AMP and BMPs and the Role of the Agricultural Inspector

Wisconsin Gas will employ a construction manager and an environmental manager to provide oversight and enforcement of permits, approvals, and the AMP and BMPs. Wisconsin Gas will also retain an Agricultural Inspector for the project. The Agricultural Inspector will be thoroughly familiar with the project and pipeline construction processes as well as issues regarding agricultural operations and soil conservation. DATCP recommends that the Agricultural Inspector submit weekly reports to DATCP for review.

Contractors will be required to structure their construction activities to be consistent with the AMP and the BMPs. Refer to Appendix E for the full text of these documents. Wisconsin Gas will work with landowners to ascertain existing agricultural operations that may require special attention during construction and restoration. Topics that are covered by the AMP and BMPs include restoration of any damaged conservation practices, tiling, and fences.

Appraisal and Compensation

Wisconsin Gas will provide an appraisal of the affected property to the landowners. This will be the basis for their compensation offer. The landowners have the right to obtain their own appraisal of their property. They will be compensated for the cost of this appraisal by the utility if the following conditions are met:

- The appraisal must be submitted to Wisconsin Gas within 60 days after the landowner receives the company’s appraisal.
- The appraisal fee must be reasonable.
- The appraisal must be complete.

The amount of compensation is based on these appraisals and is established during the negotiation process between the utility and the individual landowners. An appraisal is an estimate of fair market value. Wisconsin Gas is required to provide landowners with information...
about their rights in this process before negotiations begin. No easement negotiations may being nor Wisconsin Gas make a jurisdictional offer to a property owner until 30 days after this AIS is published. Additional information about the appraisal process and landowners rights can be found on the DOA website at: http://doa.wi.gov/Divisions/Energy-Housing-and-Community-Resources/Relocation-Assistance.

Landowners should keep in mind that any easement they sign with a utility is an individual contract. When considering whether or not to sign an easement, landowners should examine the language carefully and verify that it contains all agreed-to terms. Landowners should be familiar with the company’s project-specific AMP and BMPs (Appendix E) so as to determine if additional conditions should be negotiated with the utility. Though they can choose to waive any or all of the practices and procedures described in the AMP and BMPs, DATCP recommends to only do so with careful consideration. Landowners may want to seek legal advice if they have any questions about this process, and should make sure that any attorneys hired have expertise and experience in eminent domain law and procedures. More reference information can be found in Appendix B.
VII. CONSTRUCTION PROCESS

If a project is approved by the PSC, construction on the new gas pipeline will begin after the utility has secured all necessary permits and ROW easements. Typical natural gas pipeline construction sequence proceeds in the manner of an outdoor assembly line; comprised of specific activities that make up the linear construction sequence. These operations include surveying and staking the ROW, clearing and grubbing (digging up roots and stumps), grading, pipe stringing, welding and bending, trenching, lowering-in, backfilling, re-grading, cleanup, hydrostatic testing, and restoration (Figure 7). While most of this project would use open trench construction, in some locations, horizontal directional drilling (HDD) is used in order to avoid impacts to features such as roads, driveways, and natural resources.

Typical construction equipment used on pipeline projects include: dozers, graders, excavators, trenchers, dump trucks, backhoes, side booms, ATV’s, road bore rigs, horizontal directional drill rigs, pickup trucks, rock trenchers, vacuum excavators, rippers, tillers, rock picking machines, welding rigs and trucks, and x-ray trucks.

Surveying and Staking

The first construction step involves surveying and staking the pipeline centerline, construction ROW limits, temporary workspace areas, and known underground facilities that cross or parallel the proposed pipeline. Construction activities and equipment travel requires the use of temporary work space in addition to the permanent easement.

Access roads to the pipeline ROW are typically along existing ROWs, including public roads and farm roads, though, additional temporary access roads may be necessary and some of these may cross agricultural lands. Temporary work space needed for access roads across private lands will be negotiated with the landowner and their construction will follow practices detailed in the utility’s AMP and BMPs including where appropriate, soil segregation, proper maintenance of existing surface drainage patterns, and restoration of the land. Upon approval from the property owner, access roads may be left in place.

Clearing, Grubbing, and Grading

The construction ROW (easement and areas secured for temporary work space) is cleared, grubbed, and graded to provide a level area for pipe-laying operations and the transport of construction equipment. Clearing involves the removal of all trees and brush from the work area. Grubbing or the removal of stumps and roots, occurs over the area where the trench will be excavated. Some non-woody vegetation is removed by mowing. However, crops such as small grains with a limited amount of biomass may be left in place to minimize soil erosion. A fence crew operates with the clearing crew to cut and brace existing fencing and install temporary gates along the ROW. This crew also installs necessary fencing near identified sensitive areas as required by agencies and at pastures that contain livestock.
Figure 9: Typical Pipeline Construction Cross-Section on Agricultural Land

NOTES:
1. CONSTRUCTION RIGHT-OF-WAY WILL TYPICALLY BE 100’ WIDE CONSISTING OF 50’ OF PERMANENT RIGHT-OF-WAY AND UP TO 50’ OF TEMPORARY CONSTRUCTION RIGHT-OF-WAY. ADDITIONAL TEMPORARY WORKSPACE WILL BE NECESSARY AT MAJOR ROAD, RAIL, RIVER CROSSINGS, SIDESLOPES, AND OTHER SPECIAL CIRCUMSTANCES AS SHOWN IN PROJECT PLANS.
2. THIS DRAWING REFLECTS “FULL” TOPSOIL STRIPPING PROCEDURE.
3. STOCKPILE TOPSOIL SEPARATELY FROM DITCH SPOIL AS SHOWN OR IN CONFIGURATION APPROVED BY THE INSPECTOR.
4. MINIMUM COVER 48” IN AGRICULTURAL.

Source: We Energies
The utility will work with each landowner regarding the cutting of merchantable timber necessary for construction of the pipeline. Timber may be cut and left along the edge of the ROW for the landowner’s use. If the landowner does not want to retain ownership of the material, it will be properly disposed. The disposal of trees, brush and stumps may include burning, burying, or chipping at a landowner-approved location, or removal to another authorized location.

Vegetation from wild black cherry and black walnut trees can be toxic to livestock. All debris from these trees are to be removed from actively pastured areas to prevent its contact with livestock. This material will not be stockpiled on-site.

The utility strips the topsoil (typically the top 12 inches) from the full width of the ROW in agricultural areas. The topsoil is stockpiled along the edge of the easement to minimize damage to the productivity of the topsoil. In some locations, maintaining pre-construction soil productivity requires that the subsoil be segregated not only from the topsoil but also from the underlying parent material. This is known as triple-lift soil managing (also referred to as three-lift soil handling).

Erosion control methods and materials vary depending on the specific construction activities, time of year, and site soil and slope conditions at the time of construction. A general description of construction phases will be outlined in the utility’s Erosion Control Plan and the project-specific AMP and BMPs. These documents include details about clearing and grubbing (digging up roots and stumps), pipe and associated facility installation, and restoration.

Pipe Stringing

After clearing, grubbing, and grading, sections of pipe are transported by truck from pipe storage areas to the construction ROW and positioned along the pipeline route. This is called pipe stringing. Pipe stringing can be conducted either before or after trenching.

Bending and Welding

After pipe stringing, the sections of pipe are bent, as necessary, to fit the contours of the terrain. The pipe is then placed on temporary supports along the edge of the trench, aligned, and welded together. A qualified inspector visually and radiographically inspects the completed welds. Following inspection, a coating is field-applied to each weld joint. An external coating, applied at the mill protects the rest of the pipe. This pre-applied coating is also inspected and repaired as necessary.

Trenching

Open trenching is the primary method for new gas pipeline construction. Alternatively, in some locations, the utility will use HDD to avoid impacts to features such as roads, driveways, and natural resources. HDD is discussed in more detail later in this section. Trenches are typically excavated using a backhoe, or in some cases a trackhoe, or a trenching machine. Topsoil and
subsoil excavated during trenching of agricultural land is segregated and temporarily stored within the construction ROW for use during restoration. Any material not suitable for backfill, or in excess, is hauled to a suitable location. Proper erosion control practices are employed to minimize erosion during trenching and construction activities. The trench bottom is inspected to ensure it is free of rock and debris. If required, sand or soil bedding material is placed in the trench bottom. Any necessary dewatering of the trench is done in accordance with applicable permits and regulations.

Lowering-In

The pipeline is then lowered into the trench using side-boom tractors. A final inspection ensures the pipeline is properly placed on the trench bottom, that all bends conform to trench alignment, and that the pipe coating is not damaged.

Trench Breakers and Tile Repairs

Upon completion of lowering-in activities, trench breakers (plugs) are installed as needed in sloped areas to prevent subsurface water from moving along the pipe. Permanent tile repairs are also completed during this phase.

Backfilling

After the pipeline is installed in the trench, the trench is first backfilled with the subsoils and then the topsoil is redistributed over the trench and working area. To minimize the potential for soil compaction in agricultural areas, certain construction techniques may be suspended due to wet weather conditions or post-construction soil decompaction techniques may be required to return the soil to productivity.

Rocks removed from the trench but not suitable for backfill are properly disposed of. Rock content of the ROW is managed so that the size and distribution are similar to the adjacent land. The ROW is graded as near as practicable to preconstruction contours, except as needed for soil stability purposes and the installation of erosion control measures.

Horizontal Directional Drilling (HDD)

HDD is an alternative to open trench construction. It is often used to avoid disturbance to natural or manmade features such as wetlands, waterways, roads, driveways, and railroads. HDD construction through wooded areas requires fewer trees to be removed than for open trench construction. An entry and exit bore pit are typically excavated on either side of the feature to be avoided. Typically, additional ROW is needed to accommodate the entry and exit bore pits. A surface-launched drilling rig follows a shallow arc along a prescribed bore path below a feature. During this process, drilling mud, composed of clean water, bentonite clay, and synthetic polymers are pumped into the hole to lubricate the reaming tool, remove soil cuttings, and maintain the integrity of the hole. When the hole is the appropriate size the welded pipe is pulled.
through the hole. Used drilling mud is taken to an approved upland area or disposed of in accordance with applicable permits and regulations.

Cleanup and Initial Restoration

Following the completion of construction activities, the area is restored to preconstruction conditions. Surface grading is done to reestablish natural contours. Disturbed areas are revegetated to be compatible with preconstruction conditions and adjacent vegetation patterns.

Where necessary, soil compaction is alleviated and any segregated topsoil replaced. Additional detail and information about soil compaction and restoration is included in Section VIII. Trash and debris are removed and disposed of in approved areas in accordance with federal, state, and local regulations.

Fences cut or removed during construction are repaired or replaced. Pipeline markers are installed along the length of the pipeline in accordance with Department of Transportation (DOT) specifications. If drain tiles were damaged by construction activities, they are repaired.

Hydrostatic Testing

The completed pipeline is then hydrostatically tested and caliper-pigged prior to service. A pig is a mechanical device that is sent through the pipeline to perform tests on the pipeline. After backfilling is completed, sections of the pipeline are filled with water and tested to pressure levels greater than the maximum design operating pressure of the pipeline in accordance with DOT standards. These procedures are repeated along the entire length of the new pipeline. After completion of testing, the test water is disposed of in accordance with permit requirements.

Final Restoration

Revegetation is completed in areas of perennial vegetation disturbed by construction activities. Typically active or rotated croplands are not seeded unless specifically requested to do so in writing by the landowner or land management agency.

Erosion and sediment controls are implemented as needed and maintained until final restoration and stabilization are achieved.
VIII. POTENTIAL ADVERSE IMPACTS OF PIPELINE CONSTRUCTION ON AGRICULTURE

Agricultural operations and productivity can be adversely affected by pipeline construction. These impacts include but are not limited to:

- Interference with farm operations in the ROW and adjacent areas
- Soil erosion and runoff
- Interruption of or damage to irrigation systems
- Alteration of surface and subsurface drainage systems
- Impacts to grazing areas, row crops, and existing fencing
- Flooding due to dewatering activities during construction

After construction is completed, some impacts may affect agricultural productivity years afterwards, not only in the ROW but in the adjacent fields as well. These long-term potential impacts include but are not limited to:

- Topsoil inversion and mixing of the subsoil with spoil materials
- Soil subsidence
- Erosion
- Deep compaction of subsoils
- Ponding and drainage seeps from altered surface and subsurface drainage profiles
- Inadequate restoration resulting in increased rock content or alteration to the original land contours

Topsoil Mixing

Potential Adverse Impact

Good agricultural topsoil is an invaluable resource that should be preserved. Mixing of topsoil with the underlying subsoil and/or parent material will reduce tilth, organic matter content and cation exchange capacity, and alter soil structure and distribution of particle sizes (particularly water stable aggregates). The mixing of soil layers can also increase the number of rocks and increase the concentrations of harmful salts near the surface. Rocks larger than three inches can damage farm equipment and reduce soil productivity. Once mixed, full restoration may require transporting new topsoil of similar quality from an off-site location. This will add costs to the project and may still not fully return the agricultural field to pre-construction productivity.

Topsoil mixing can occur under wet or dry conditions during the grading and re-grading of the pipeline ROW. Significant long-term agricultural productivity impacts can occur as a result of soil mixing if deep ruts are created during construction and the topsoil layer is shallow. To avoid these types of impacts, topsoil is typically stripped to a depth of at least 12 inches.
Soil mixing is a greater danger when soils are wet. The moisture and precipitation pattern expected during construction must be taken into account in planning adequate mitigation measures to protect topsoil from mixing. In some soils, one inch of summer rainfall over five of ten days can cause significant rutting with normal construction equipment traffic.

Measures to Avoid Topsoil Mixing/Inversion

To prevent the mixing of topsoils with subsoil layers, the topsoil is stripped from the full width of the ROW to a depth of 12 inches across agricultural lands (Appendix E, AMP 10a and BMP 02). This is done prior to grading and any construction activities. Topsoil does not need to be removed from the topsoil storage area on the edge of the working side of the trench or areas where construction mats are laid on the surface for material storage and equipment travel. The stripped topsoil is then stored separately from the subsoil material until construction is complete and the topsoil can be replaced during restoration of the ROW. With the topsoil removed, work may continue under wetter conditions; however subsoils may still be at risk for compaction and rutting. If compaction occurs or is suspected, subsoils should be de-compacted during the restoration process.

Fertile Subsoil Mixing with Underlying Parent Material

Potential Adverse Impact

Long-term crop productivity losses may result from mixing lower soil layers of glacial till/outwash or sandy soil with upper layers of better quality subsoils. The subsoil layer in many parts of Wisconsin is often of relatively high quality. Estimates for yield loss may be as significant immediately after construction for areas where poorer quality subsoils are mixed with better quality upper soil horizons.

Measures to Avoid Mixing of Fertile Subsoils Mixed with Underlying Parent Material

To avoid mixing the fertile subsoil with underlying gravelly material triple-lift soil management (also referred to as three-lift soil handling) can be used to greatly mitigate construction impacts to agricultural soils. Details about the triple-lift soils on this project can be found in Section V, under “Triple-Lift Soils”. In this method the subsoil is not only segregated from the topsoil but also from the underlying parent material. Three separate storage piles are required: one for the topsoil to a depth of 12 inches; a second for the subsoil to its depth of up about to 2 or 3 feet; and a third for the underlying soil horizons. All three soil layers are stored separately for reuse during backfilling of the trench and restoration. In order for this method to be of value, there must be a significant difference between the upper subsoil layer and the lower subsoil layer or parent material. Candidate soils are identified through desktop soil analysis and verified by subsequent on-site sampling. This type of soil segregation would only be used over the trench and through lands that are and will be returned to crop and pasture use (Appendix E, BMP 09).
Increased Rock Content of Soil

Potential Adverse Impacts
Large stones at the surface can damage farm machinery and lead to added costs to landowners for removal. Many subsoil layers have a greater rock content than the topsoil. Trench excavations may bring up lower soil horizons with rocky subsoil, which might be mixed with upper soil layers. Even where the triple-lift method is used, additional rocks may be spread through the subsoil layer during backfilling.

Pipeline companies typically pad the area around the pipe with sand or stone-free subsoil to avoid damage to the pipe. Due to the subsurface soil volume displaced by the pipe and by the padded stone-free area, the restored upper subsoil profile may end up containing a higher rock content than was present before excavation. Through frost heave dynamics, these rocks may eventually end up near the soil surface.

Mitigation Measures
To avoid increasing the rock content of the soil, Wisconsin Gas will ensure that the size, density, and distribution of rock in the restored construction work areas will be similar to the adjacent areas not disturbed by construction. However, rocks of 3 inches in diameter or greater can damage farm equipment. To prevent this from occurring, rocks with a diameter of 3 inches or greater should be removed from soils replaced in cropland. Excess rocks should not be spread across the ROW, or added to the topsoil pile, or to other farm fields.

DATCP recommends that any rocks larger than 3 inches in diameter be removed from restored cropland to a depth greater than the top 12 inches of soil, depending on the type of soil affected.

Soil Compaction

Potential Adverse Impact
Compaction of subsoil and topsoil is another major adverse impact that can result from pipeline construction. Compaction reduces the uptake of water and nutrients by crops, restricts rooting depth, decreases soil temperature, increases the proportion of water-filled pore space at field moisture capacity, decreases the rate of decomposition of organic matter, decreases pore size and water infiltration, and increases surface runoff. The greater the depth at which soil compaction occurs, the more persistent it is. Yield loss caused by soil compaction may range between 10 and 50 percent for a variety of crops (Wolkowski, R. & Lowery, B., (2008), Soil Compaction: Causes, Concerns, and Cures, University of Wisconsin Extension, publication A3367). The magnitude of yield loss is dependent on a number of factors including, soil type, degree of compaction, and water availability. Heavy machinery with axle loads that exceed 10 tons increase the risk of compaction extending into the subsoil, compacting soils to a depth that cannot be removed by conventional tillage. Since wet soils are more susceptible to compaction,
potential damage from compaction may be greater in areas with hydric soils. Often, the plow layer may appear dry, but the subsoil may still be saturated resulting in compaction potential during construction.

Soil Restoration: Removing Compaction in Subsoil and Topsoil

Pipeline construction can cause long-term damage to agricultural productivity from deep soil compaction if proper decompaction is not performed. However, with the proper techniques, timing, and equipment, there are few subsoils that cannot be adequately decompacted. Deep tillage devices are typically used on the exposed subsoil of the construction ROW, after the trench has been backfilled and time has been allowed for trench settling.

One common option for deep ripping is an industrial V-ripper, which should have 4 to 5 heavy-duty shanks, spaced 30 to 36 inches apart and pulled with 40 to 50 horsepower per shank. It is recommended to use this with an articulated, 4-wheel drive tractor with the bulk of the weight in front. Such rippers are often not readily available to typical farm operators. Other types of equipment such as chisel plows or paraplows may also be effective under some conditions.

Multiple passes with the deep decompaction device are essential over the compacted subsoil in the ROW until sampled penetrometer readings in the ROW match those in adjoining fields that were not disturbed by construction. The typical depth of ripping is 18 to 24 inches below the exposed subsoil. Multiple straight and zigzag patterns of ripping need to be used on different passes. The type of equipment used and the depth of rip may be adjusted as appropriate for different soil types or for a deeply and severely compacted soil.

In lacustrine soils with intensive tile drain systems, deep ripping may be limited to the top 6 to 8 inches of the subsoil layer because soil compaction from pipeline construction is usually undetectable below 8 inches and deeper ripping could destroy the load-bearing capacity of the subsoil. However, the presence of tile lines is no reason to avoid completing the deep ripping phase of the soil restoration process. Any damage to tiles during the deep ripping process must be repaired/replaced by the utility at the utility’s expense. Deep ripping and other subsequent restoration steps must only be done during low soil moisture conditions to prevent irreparable damage to soils from mixing or additional compaction.

Following decompaction, penetrometer measurements are taken as per a sampling protocol to ensure proper decompaction has occurred at representative sites throughout the topsoil and subsoil profile. Moisture conditions should be comparable on and off the construction ROW and throughout the soil horizon at the time of sampling since the same bulk density will result in a much lower penetrometer resistance reading when the soil is wet as opposed to when it is dry.

Once effective deep decompaction of subsoil has been accomplished as indicated by penetrometer readings, rocks have been removed and topsoil replaced, a final subsoil shattering may be necessary to correct the compaction caused by the heavy decompaction equipment. This
is done using an angled 3- or 4-leg tool bar, with leg spacing set no greater than 2 feet. Equipment commonly used for this includes a four-legged paratill or paraplow with the depth wheels disengaged to allow for maximum adjustment of depth of penetration. The angled legs are pulled slowly at an 18-inch depth (up to a maximum of 24 inches) using 50 horsepower per leg by a 4-wheel drive articulated tractor with the bulk of the weight in front traveling at a rate of 2.5 to 3 mph. This must be done only in conditions of low moisture to prevent damage to the soil profile and sloughing or mixing. Disking should not be used for subsoil shattering because it can mix and re-compact the subsoil and topsoil.

In most cases, DATCP does not recommend the delegation of decompaction to farm operators. Farm operators generally lack the proper equipment to correctly restore productivity after pipeline construction. The necessary scope and depth for successful decompaction of agricultural lands typically exceeds standard farming equipment and practices.

Drainage

Potential Adverse Impacts

In addition to damaging drainage tile, pipeline construction can permanently alter the soil profile, thereby affecting drainage patterns. The resulting de-stratification or alteration of soil horizons from trenching may cause ponding or seeps that reduce crop yields. There should be careful monitoring for the emergence of these problems and once observed, remediation steps should be taken as soon as possible. The pipeline may alter subsurface drainage patterns and exacerbate existing drainage problems in fields by increasing surface flows. Additionally, adjacent fields may be affected by the change in the drainage profile due to the nearby presence of a pipeline. It may take several years for these problems to become apparent, or even longer if there is a dry year. New drainage tiles and systems may be required to correct problems that arise.

The location of significant seeps along the trench walls must be carefully monitored during the open construction phase of the project. In some cases, seeps may be present prior to construction, but may be made more serious by construction. It is important to document the existing drainage patterns and any drainage problems as part of pre-construction documentation. It is also possible for pipeline construction to interfere with future plans for drainage systems in a field.

Mitigation Measures

The AMP and BMP 04 (Appendix E) requires that the excavated pipeline trench be a minimum of 12 inches from the drainage tile, where practicable. All damaged tiles will be permanently repaired prior to backfilling. Repaired tiles on or adjacent to the ROW must be equivalent to its prior condition. Local tile contractors should be used wherever possible.
Temporary ditch plugs and permanent trench breakers are used to help deter the pipeline corridor from acting as a channel for underground water flows.

Where construction activities has altered the natural stratification of the soils resulting in new wet areas, DATCP recommends Wisconsin Gas install subsurface intercept drain tiles where it is determined that the tiles are needed to prevent surface seeps either in the ROW or on adjoining lands.

If a landowner is planning the installation of drainage tile within the next three years and drainage locations have been documented in writing, these documents should be provided to Wisconsin Gas, prior to construction.

Trench Dewatering

Potential Adverse Impacts

Before lowering the pipe into the trench, dewatering of the trench may be necessary so that the bottom of the trench can be inspected for rocks. Any combination of weather, topography and/or hydric soils (i.e. land with a shallow water table) can result in conditions of wet trenching. Extra care must be taken when wet trenching to avoid mixing, compacting, and erosion of subsoil. Trench dewatering is typically done in such cases. Improper trench dewatering can result in soil erosion; sedimentation and deposition of gravel, sand, or silt onto adjacent agricultural lands; and inundation of crops.

Mitigation Measures

The BMPs (Appendix E, BMP 05: Trench Dewatering) requires Wisconsin Gas to identify low areas and hydric soils that are likely to collect water during construction, as well as suitable areas for the discharge of water accumulated within the pipe trench or other excavated areas. The utility must ensure that work is structured to minimize the accumulation of water within the trench and create discharge locations that are in compliance with current drainage laws, local ordinance, DNR permit conditions, and the provisions of the Clean Water Act. Discharge locations must be well-vegetated areas that prevent the water from returning to the ROW; be as far from backfilling activities as possible; and not deposit gravel or sediment onto fields, pastures, or watercourses. If deposition of trench water onto cropland is unavoidable, crops should not be inundated for more than 24 hours. Crops inundated for more than 24 hours may incur severe damage. Discharge of water from non-organic farms or from hydrostatic testing should never be allowed to flow onto organic farm operations.

Silt or sediment extraction from the trench is required to be minimized by preventing the intake from touching the bottom or sides of the trench, and by ensuring that the intake is supported by a flotation device. Dewatering will be monitored and stopped whenever necessary to correct conditions and practices inconsistent with BMP 05. When construction in hydric soils creates wet
trenching and dewatering activities that cause unavoidable damage, Wisconsin Gas will reasonably compensate the landowner for damages and restore the land and crops to pre-construction conditions.

Erosion and Conservation Practices

Potential Adverse Impacts
There is the potential for soil erosion due to the destabilization of soil horizons, the piling of loose soils, and the extensive use of machinery and wheeled vehicles. During wet conditions, risks to soil from erosion are increased. However, in parcels with a shallow water table, wet conditions may be the normal soil condition. In these areas wet trenching may be necessary. Trench dewatering can also result in flooding, erosion, and sedimentation on farm fields off the ROW unless appropriate measures are applied.

As described in an earlier section, both topsoil and subsoil along the project routes are valuable resources. Significant erosion of either layer could have an adverse effect on long-term productivity of agricultural lands. Where a pipeline ROW runs up and down gently sloping soils, the collection of surface runoff in the tracks left by construction equipment can erode significant amounts of soil in fields.

Mitigation Measures
To avoid erosion, construction and restoration should not proceed if conditions are excessively wet. The Wisconsin Gas AMP, Section 10f (Appendix E), requires that the construction contractor meet or exceed DNR standards for erosion control on construction sites. These standards are described on the DNR’s website at: http://dnr.wi.gov/topic/stormwater/standards/index.html.

Section 8 of the AMP (Appendix E) allows the Agricultural Inspector to temporarily halt construction or restoration activities when work activities do not appear to meet the AMP requirements. This authority may be used when the soil conditions are unfavorable due to weather conditions.

Existing erosion control practices such as diversion terraces, grassed or lined waterways, outlet ditches, water and sediment control basins, vegetated filter strips, etc. damaged by construction activities must be restored to pre-construction condition.

Temporary erosion controls must be properly maintained on agricultural lands on a daily basis throughout construction and restoration. Whenever necessary, they must be reinstalled until permanent erosion controls are installed or restoration is completed. The details of erosion controls are described in AMP Sections 10f and 10i, and in BMP 03 (Appendix E).

Wisconsin Gas must structure work in a manner consistent with the requirements of the AMP and BMPs and maintain an adequate supply of approved erosion control materials on hand.
Temporary Access Roads

Potential Adverse Impacts
Temporary access roads may need to be created during the construction process to allow ingress and egress of personnel and equipment where access from public or private roads are not available or suitable.

Temporary access roads may cross agricultural fields. The potential negative effects of building access roads over soils are much the same as those suffered by soils in pipeline construction areas. These impacts include the potential mixing of topsoil with subsoil, compaction of topsoil and subsoil, disturbance of drainage, tiling, and erosion. Any of these impacts can result in the loss of agricultural productivity on affected soils.

Mitigation Measures
Wisconsin Gas will use existing public roads and farm roads to access the ROW whenever possible. The utility must consult with landowners before siting temporary access roads on their property. (Appendix E, AMP, Section 10b) Where new access roads are constructed on agricultural land, the utility will strip the topsoil and temporarily stockpile it. Access roads will be designed to allow proper drainage and minimize soil erosion. Geotextile construction fabric may be placed below any imported rock used to build the road, in order to protect the subsoil. If desired by the landowner, temporary roads will be left in place after construction. If removed, the same soil restoration practices will be used on the temporary access road area as are used for the pipeline ROW to mitigate impacts. Any disturbance to drainage tiles or drainage patterns should be remediated by the utility or its contractors. During the restoration phase, temporary and existing access roads will be restored to preconstruction conditions. New temporary access roads will be removed unless there is an agreement in writing between the landowner and Wisconsin Gas for them to remain.

Trees and Other Woody Vegetation

Adverse Impacts
All trees will be removed from the full width of the ROW (temporary and permanent ROW) prior to the start of construction. Trees may be permitted to regrow or be replanted in the temporary easement areas. However, the permanent easement (between 20 to 50 feet of ROW width) must remain clear of trees for pipeline safety and access purposes. If they are within the ROW, trees and brush will be removed along property boundaries and landscaped areas, land planted with tree crops (nurseries, Christmas tree farms, orchards, etc.), and woodlots.

The utility may elect to minimize the “tree-free” corridor to 20 feet so that impacts to tree crops are minimized. Landowners are compensated for the loss of trees that must be removed and may also be compensated for the future loss of tree crop within the permanent easement.
these properties are removed from agricultural use in the future, the utility may decide to remove all trees within the 50 foot permanent easement corridor, as those trees would no longer be an agricultural crop.

Where the ROW crosses through wooded areas, the landowners may choose to keep the cut timber, which will be cut and stacked at the edge of the construction corridor. If they decline, the cut wood will be removed from the site.

Typically, tree stumps are only excavated and removed from the trench area. Stumps in other parts of the ROW are usually cut at or near ground level. Wild black cherry and black walnut trees must be stockpiled or disposed so that the wood is not accessible to livestock. The utility will dispose of any trees or brush that the landowner doesn’t want by burying, burning, or removing the woody vegetation off-site. Refer to Section 10c of the AMP (Appendix E) for additional details about vegetation removal.

Mitigation Measures
Before an easement is signed, landowners should determine from the utility where trees will and will not be permitted to re-grow within the ROW. The utility should consult with landowners before disposing of any trees or stumps that need to be removed from the pipeline ROW.

Irrigation

Potential Adverse Impacts
Pipeline construction can interfere with the operation of field irrigation systems. Crops outside of the proposed pipeline ROW could also be negatively affected when irrigation is interrupted.

Mitigation Measures
The utility has the right to temporarily disrupt irrigation systems that intersect the pipeline during construction. However, the landowner must be notified beforehand and establish a mutually acceptable amount of time that the system will be taken out-of-service. The maximum period of time that irrigation systems can be taken out-of-service without reducing yields on field corn is 5 to 7 days during the period from silking - tasseling to the finished crop. Earlier delays in meeting irrigation requirements may result in smaller plants, but should not reduce grain production significantly. Vegetable crops will have a shorter period between irrigations.

DATCP recommends that all irrigators along the pipeline route document irrigation information for their fields, including amount and irrigation frequency; and weather conditions such as rainfall and temperature for the growing season prior to the start of pipeline construction. Pre- and post-construction records will assist the landowner in identifying stressed crops caused by the utility’s disruption of the irrigation system. Stressed crops could potentially result in reduced yields.
Any damages to the system (well, pumping plant, irrigation system – center pivot, traveling large volume sprinkler, buried supply lines, electrical supply lines) caused by pipeline construction will be repaired by Wisconsin Gas, as soon as possible (Appendix E, AMP, Section 10e).

Fencing

Potential Adverse Impacts
The construction process may necessitate severing fences that are located across pipeline construction areas. Changes to existing fence lines can interfere with grazing activities, particularly for rotational grazing operations which depend on precise, scheduled grazing in particular areas.

Mitigation Measures
Prior to construction, the utility will identify grazing operations adjacent to the pipeline route, including rotational grazing. The utility has stated that they will work with landowners to determine if fences may be in the way of construction activities. Severe disruption of grazing operations should be avoided as much as possible by modifying routes or by consultation with the landowner regarding timing of construction activities.

Permanent fences severed by the utility will be restored as close as possible to their previous condition. Temporary fences and gates will also be installed where necessary at landowner request to allow continued grazing by livestock across the ROW. Tension on such fences must be adequate to prevent sagging. Bracing of fences to trees or vegetation is prohibited. Temporary fences will be removed following construction, unless the landowner approves otherwise. These measures are described in the Appendix E, AMP, Section 10d.

Weed Control

Potential Adverse Impacts
Disturbance of the land by construction activities may allow opportunistic weeds to take root where none existed prior to the construction activities. Noxious weeds may be spread from parcel to parcel by construction equipment and activities. From the pipeline ROW, weeds may spread to adjacent uninfested farm fields. Stockpiled soils can become an opportunistic place for weeds to flourish because they remain undisturbed for most of the construction period.

Mitigation Methods
Weed growth on stockpiled topsoil could present a problem to adjacent cultivated fields. Wisconsin Gas will remove or kill weeds observed on the stockpile. If herbicide is used on the topsoil pile, the landowner will be consulted in regard to the choice of herbicide. All herbicide application will be done by a state-licensed applicator (Appendix E, AMP, Section 10h).
Seeding and Seedbed Preparation

Potential Adverse Impacts
Seeding over the ROW without consulting the landowner may interfere with cropping plans, or may result in a cover crop that is not consistent with the landowner’s plans.

Mitigation Measures
As described in BMP 07: Seeding and Seedbed Preparation, Wisconsin Gas would reseed areas disturbed by construction activities following final clean-up. Seed mixes will be determined in consultation with the landowner, if appropriate. Any seedbed preparation and seeding done by the utility must be done at the correct time and at the proper depth to promote adequate seed-soil contact on cropland or pasture requiring seeding. Seeding is to be completed immediately after seedbed preparation, if weather permits. Temporary erosion controls will be used if weather does not permit immediate seeding. If seeding is done outside of recommended windows, temporary erosion control methods such as mulching or temporary cover will be used.

Bio-security on All Farms and Special Considerations for Organic Farms

Potential Adverse Impacts
Construction activities can spread weeds, diseases, chemicals, and genetically-modified organisms (GMO’s) that can cause significant economic losses to farms, and may have greater negative impacts on certified organic farms. Wisconsin Gas’ personnel and contractors should follow all posted directives regarding bio-security on farms. For example, all personnel and contractors should wear protective footwear whenever they are requested to do so.

For certified organic farms and farms working towards certification, contamination concerns can involve a broad range of substances. Prohibited substances may be spread to organic farms directly via construction machinery or carried indirectly by water flowing onto fields. Pesticides can also drift onto adjacent organic farm properties if wind direction and speed are not appropriately monitored.

Mitigation Measures
DATCP recommends that any affected farm operation that has a written bio-security plan, provide this plan to Wisconsin Gas. Wisconsin Gas’ employees and contractors should become familiar with these plans and develop appropriate procedures to comply with these plans.

DATCP recommends that landowners with organic certifications and those working towards organic certification discuss the range and type of substances that are and are not permitted on their land by their certifying entity. This list should be shared with Wisconsin Gas and their subcontractors. Any substances that are not approved for use in organic production should not be used on these properties. Additionally, prior to the start of construction, appropriate methods
should be agreed-to between the landowner and the utility to avoid the potential for any unintentional contacts including herbicide applications from adjacent ROW acreage to drift onto the organic farm. Also, Wisconsin Gas should not apply seed to certified organic farms prior to consultation with the landowner.

Induced Current on the Pipe

A small direct (DC) current is applied to pipelines for cathodic protection to prevent corrosion of the pipe material. Because pipelines, particularly if located in transmission line corridors, can be carriers of induced alternating (AC) current, the pipeline industry takes precautions to discharge AC current along the pipe into the ground. This is necessary to both protect the integrity of the DC cathodic protection system as well as prevent continued flow of AC current in the pipe. If induced AC current is not adequately grounded, it can cause long-term serious metal loss from the pipe wall, potentially resulting in gas leaks.
IX. CONCLUSIONS

Construction of the proposed pipeline project has the potential to affect agricultural lands along one of two proposed routes. Route A would affect approximately 87 acres of farmland and Route B would affect approximately 107 acres of farmland. On agricultural land, the proposed ROW would be up to 100 feet wide consisting of up to 50 feet of permanent easement and up to 50 feet of temporary easement. Pipeline construction has the potential to adversely impact farmland in many ways including but not limited to the following:

- Long-term yield reductions;
- Mixing of topsoil and subsoil;
- Compaction of topsoil and subsoil;
- The rise of excess rocks to the surface interfering with farm machinery;
- Long-term changes in field drainage due to the introduction of the underground pipeline channels;
- Interference with surface and subsurface drainage, irrigation, fencing, and grazing; as well as flooding of fields to discharge excess trench water;
- Soil erosion;
- Interference with field operations from temporary access roads;
- Removal of trees and other woody vegetation leaving stumps and debris;
- Migration of weeds along the pipeline ROW during construction;
- ROW restoration that is inconsistent with landowners cropping plans;
- Use of prohibited substances on farms with organic practices; and
- Spread of diseases from parcel to parcel unless proper protocols are observed.

To avoid or minimize agricultural impacts, Wisconsin Gas has prepared an AMP and BMPs. These documents identify technical and performance standards for construction and restoration, and are essential to the protection of agricultural land. However, their value can be realized only to the extent that they are faithfully implemented during the construction and restoration process. The goal of the AMP and BMPs is to protect the agricultural resources and farmland owners along the route. However, nothing in the AMP or BMPs prevents landowners from negotiating stronger measures in their individual negotiations with Wisconsin Gas. In addition, there may be areas of concern to landowners that are not addressed by the AMP or BMPs.

DATCP supports the creation and use of the AMP and BMPs for this project. DATCP also supports the use of a well-qualified Agricultural Inspector in addition to an Environmental Manager to ensure that damage to agricultural land as a result of the proposed project is avoided, minimized, or mitigated.

The role of the Agricultural Inspector is crucial in enforcing the AMP and BMPs; reporting incidents of noncompliance; recommending corrections when processes are being carried out in
ways that violate the AMP or BMPs; and stopping the construction task when serious violations occur.

DATCP recommends that the Agricultural Inspector submit weekly reports to DATCP for review.

Following the completion of initial restoration, Wisconsin Gas should respond to landowner concerns and take steps to mitigate observed problems in the field caused by the pipeline project.
X. MAILING LIST

| *GOVERNOR SCOTT WALKER*
| 115 E CAPITOL |
| *SEN TERRY MOULTON*
| AGRICULTURE COMMITTEE
| 310 S CAPITOL |
| *REP LEE NERISON*
| AGRICULTURE COMMITTEE
| 310 N CAPITOL |
| *RESOURCES FOR LIBRARIES (15)*
| DOCUMENT DEPOSITORY PROGRAM
| 2109 SOUTH STOUGHTON ROAD |
| **STATE DOCUMENTS SECTION**
| **THE LIBRARY OF CONGRESS**
| **10 FIRST ST S E**
| **WASHINGTON DC 20540-0001** |
| **JULIE A WATHKE**
| **DUNN COUNTY CLERK**
| **800 WILSON AVENUE – ROOM 147**
| **MENOMONIE WI 54751** |
| **SUZANNE GAINES**
| **TOWN OF SHERIDAN CLERK**
| **E3294 1300th AVENUE**
| **RIDGELAND WI 54763** |
| **DAVID BARTLETT**
| **TOWN OF SHERIDAN CHAIRMAN**
| **E3294 1300th AVENUE**
| **RIDGELAND WI 54763** |
| **GENE HANSON**
| **TOWN OF WILSON CHAIRMAN**
| **E5618 1370th AVENUE**
| **RIDGELAND WI 54763** |
| **MARK WARNER**
| **TOWN OF OTTER CREEK CHAIRMAN**
| **E5487 1170th AVENUE**
| **WHEELER WI 54772** |
| **RUSSELL HITZ**
| **TOWN OF HAY RIVER CHAIRMAN**
| **E4576 1050th AVENUE**
| **WHEELER WI 54772** |
| **DANIEL PRESTEBAK**
| **DUNN COUNTY CONSERVATIONIST**
| **GOVERNMENT CENTER ROOM 330**
| **800 WILSON AVENUE**
| **MENOMONIE WI 54751** |
| **KRISTIN BRUDER**
| **DUNN COUNTY UW-EXTENSION AGENT**
| **GOVERNMENT CENTER ROOM 330**
| **800 WILSON AVENUE**
| **MENOMONIE WI 54751** |
| **MENOMONEE PUBLIC LIBRARY**
| **600 WOLSKE BAY ROAD**
| **MENOMONIE WI 54751** |
| **DALLAS LIBRARY**
| **MAIN STREET**
| **DALLAS WI 54733** |
| **DUNN COUNTY NEWS**
| **3120 SCHNEIDER AVENUE**
| **SUITE 10**
| **PO BOX 40**
| **MENOMONIE WI 54751** |
| **ROBERT D & BESS K MOEN**
| **E5609 STATE ROAD 64**
| **WHEELER WI 54772** |
| **ROBERT T BESKAR**
| **1114 HELEN N STREET**
| **HUNDSON WI 54016** |
| **JONATHAN L RUDIE**
| **5616 E 1280th AVENUE**
| **WHEELER WI 54772** |
| **STEPHEN M & LYNN M BERG**
| **N13018 688th STREET**
| **RIDGELAND WI 54763** |
| **BRYAN E ANDREWS**
| **E4948 COUNTY ROAD N**
| **WHEELER WI 54772** |
| **CRAIG W & MARY ANNE CONKLIN**
| **1225 E WOODLAND AVENUE**
| **BARRON WI 54812** |
| **DAVID A & DNEISE E SCHLOUGH**
| **E5456 1280th AVENUE**
| **WHEELER WI 54772** |
| **MIKE GRISAR**
| **WE ENERGIES**
| **333 WEST EVERETT STREET**
| **MILWAUKEE WI 53527** |

Copies of the final AIS will be emailed to the following newspapers: Agri-View and Country Today.
APPENDIX A: ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>Agricultural Impact Statement</td>
</tr>
<tr>
<td>AEA</td>
<td>Agricultural Enterprise Area</td>
</tr>
<tr>
<td>AMP</td>
<td>Agricultural Mitigation Plan</td>
</tr>
<tr>
<td>BMPs</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>CA</td>
<td>Certificate of Authority</td>
</tr>
<tr>
<td>CREP</td>
<td>Conservation Reserve Enhancement Program</td>
</tr>
<tr>
<td>CRP</td>
<td>Conservation Reserve Program</td>
</tr>
<tr>
<td>CTH</td>
<td>County Trunk Highway</td>
</tr>
<tr>
<td>DATCP</td>
<td>Department of Agriculture, Trade, and Consumer Protection</td>
</tr>
<tr>
<td>DNR</td>
<td>Department of Natural Resources</td>
</tr>
<tr>
<td>FPP</td>
<td>Farmland Preservation Program</td>
</tr>
<tr>
<td>HDD</td>
<td>Horizontal Directional Drilling</td>
</tr>
<tr>
<td>MFL</td>
<td>Managed Forest Law</td>
</tr>
<tr>
<td>NASS</td>
<td>National Agricultural Statistics Service</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NSP</td>
<td>Northern States Power</td>
</tr>
<tr>
<td>PSC</td>
<td>Public Service Commission of Wisconsin</td>
</tr>
<tr>
<td>PSIG</td>
<td>Pounds per Square Inch</td>
</tr>
<tr>
<td>ROW</td>
<td>Right-of-Way</td>
</tr>
<tr>
<td>STH</td>
<td>State Trunk Highway</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
</tbody>
</table>
APPENDIX B: DATCP STATUTES FOR AGRICULTURAL IMPACT STATEMENTS

DATCP is required to prepare an AIS whenever more than five acres of land from at least one farm operation will be acquired for a public project if the agency/company acquiring the land has the authority to use eminent domain for property acquisitions. DATCP has the option to prepare an AIS for projects affecting five or fewer acres from each farm if the proposed project would have significant effects on a farm operation. The entity proposing a construction project is required to provide DATCP with the necessary details of the project so that the potential impacts and effects of the project on farm operations can be analyzed. DATCP has 60 days to make recommendations, and publish the AIS. DATCP provides the AIS to affected farmland owners, various state and local officials, local media and libraries, and any other individual or group who requests a copy. Thirty days after the date of publication, the project initiator may begin negotiating with the landowner(s) for the property.

Wisconsin Statute § 32.035 is provided below and describes the Wisconsin Agricultural Impact Statement procedure and content.

(1) DEFINITIONS. In this section:

(a) "Department" means department of agriculture, trade, and consumer protection.

(b) "Farm operation" means any activity conducted solely or primarily for the production of one or more agricultural commodities resulting from an agricultural use, as defined in s. 91.01 (2), for sale and home use, and customarily producing the commodities in sufficient quantity to be capable of contributing materially to the operator's support.

(2) EXCEPTION. This section shall not apply if an environmental impact statement under s. 1.11 is prepared for the proposed project and if the department submits the information required under this section as part of such statement or if the condemnation is for an easement for the purpose of constructing or operating an electric transmission line, except a high voltage transmission line as defined in s. 196.491(1) (f).

(3) PROCEDURE. The condemnor shall notify the department of any project involving the actual or potential exercise of the powers of eminent domain affecting a farm operation. If the condemnor is the department of natural resources, the notice required by this subsection shall be given at the time that permission of the senate and assembly committees on natural resources is
sought under s. 23.09(2)(d) or 27.01(2)(a). To prepare an agricultural impact statement under this section, the department may require the condemnor to compile and submit information about an affected farm operation. The department shall charge the condemnor a fee approximating the actual costs of preparing the statement. The department may not publish the statement if the fee is not paid.

(4) IMPACT STATEMENT.

(a) When an impact statement is required; permitted. The department shall prepare an agricultural impact statement for each project, except a project under Ch. 82 or a project located entirely within the boundaries of a city or village, if the project involves the actual or potential exercise of the powers of eminent domain and if any interest in more than 5 acres from any farm operation may be taken. The department may prepare an agricultural impact statement on a project located entirely within the boundaries of a city or village or involving any interest in 5 or fewer acres of any farm operation if the condemnation would have a significant effect on any farm operation as a whole.

(b) Contents. The agricultural impact statement shall include:

1. A list of the acreage and description of all land lost to agricultural production and all other land with reduced productive capacity, whether or not the land is taken.

2. The department’s analyses, conclusions, and recommendations concerning the agricultural impact of the project.

(c) Preparation time; publication. The department shall prepare the impact statement within 60 days of receiving the information requested from the condemnor under sub. (3). The department shall publish the statement upon receipt of the fee required under sub. (3).

(d) Waiting period. The condemnor may not negotiate with an owner or make a jurisdictional offer under this subchapter until 30 days after the impact statement is published.

(5) PUBLICATION. Upon completing the impact statement, the department shall distribute the impact statement to the following:

(a) The governor’s office.

(b) The senate and assembly committees on agriculture and transportation.
(c) All local and regional units of government that have jurisdiction over the area affected by the project. The department shall request that each unit post the statement at the place normally used for public notice.

(d) Local and regional news media in the area affected.

(e) Public libraries in the area affected.

(f) Any individual, group, club, or committee that has demonstrated an interest and has requested receipt of such information.

(g) The condemnor.

STATUTES GOVERNING EMINENT DOMAIN

The details governing eminent domain as it relates to utility projects are included in Wis. Stat. ch. 32 (http://docs.legis.wisconsin.gov/statutes/statutes/32.pdf).

DATCP recommends that farmland owners concerned about eminent domain powers and the acquisition of land should review this statute in its entirety. Additionally, landowners may wish to consult with an attorney who should have expertise in eminent domain proceedings. Any Wisconsin licensed appraiser should be knowledgeable in partial takings.
APPENDIX C: INFORMATION SOURCES

DATCP (datcp.wi.gov)
- Farmland Preservation
- Agricultural Impact Statements
- Wisconsin Farm Center: provides services to Wisconsin farmers including financial mediation, stray voltage, legal, vocational, and farm transfers

Department of Administration (doa.wi.gov)
Relocation Assistance includes several publication on landowner rights under Wisconsin eminent domain law
- Wisconsin Relocation Rights Residential
- Wisconsin Relocation Rights for Businesses, Farm and Nonprofit Organizations
- The Rights of Landowners under Wisconsin Eminent Domain Law, Procedures under sec. 32.06 Wis. Stats. (Condemnation procedures in matters other than highways, streets, storm & sanitary sewers, watercourses, alleys, airports and mass transit facilities)

Public Service Commission of Wisconsin (psc.wi.gov)
- PSC project webpage for docket #6650-CG-253
- PSC Natural Gas webpage

Department of Natural Resources (dnr.wi.gov)
- Energy and utility projects
- Managed Forest Law

U.S. Department of Agriculture (www.usda.gov)
- National Agricultural Statistics Service
- Web Soil Survey
- Soil Quality – Urban Technical Note No. 1, Erosion and Sedimentation on Construction Sites

We-Energies (www.we-energies.com)
- We Energies Agricultural services
- Natural gas pipeline replacement project
Wilson Lateral Natural Gas Pipeline

Agricultural Impact Statement

Wisconsin Department of Safety and Professional Services (dps.wi.gov)
- Look-up for state certification status of different types of real estate appraisers

State Bar of Wisconsin (www.wisbar.org)
For general legal information and assistance in finding a lawyer

Background Resources
- Wolkowski, R., Soil Compaction: Causes, concerns and cures
- Hughes, Jodi D., Tires, traction and compaction, University of Minnesota Extension,
 website (http://www.extension.umn.edu/agriculture/tillage/tires-traction-and-compaction/)
APPENDIX D: TRIPLE-LIFT SOIL CANDIDATE KEY

This key is applicable to soil profiles with distinct B and C horizons or alternatively to soil profiles with distinct upper and lower B horizons.

1. The slope of the soil is 12 percent or less.\(^1\)
2. The soil is not "poorly drained" or "very poorly drained".\(^2\)
3. The proposed depth of the trench intersects both the B and C soil horizons or two distinct B horizons.
4. The C horizon is not bedrock.
5. The B horizon is between 6 and 30 inches thick.
6. The B horizon (or upper B horizon) is comprised primarily of silt, clay, and/or loam.
7. The C horizon (or lower B horizon) is of poorer quality, than the B horizon (or upper B horizon) consisting primarily of gravel, rock, or sand.

Not a soil candidate for Triple-lift

Yes, soil is a candidate for triple-lift soil management.

1. Soils with a slope greater than 12 percent are Class IV soils, likely to be eroded with shallow topsoil, and marginally suited for crop production. As such, they are unlikely to meet the criteria for soils that would benefit from triple-lift soil management.
2. Poorly drained soils tend to be too wet to use triple-lift soil management successfully. They are also likely to be deep soils.
APPENDIX E: WISCONSIN GAS PROJECT-SPECIFIC AMP AND BMPs
1. INTRODUCTION
Wisconsin Gas LLC, d/b/a We Energies (the “Company”) proposes to construct a new 12-inch steel main in the Towns of Hay River, Otter Creek, Wilson, and Sheridan in Dunn County, Wisconsin. The new facility will begin at the existing Wheeler Gate Station located along County Road N in the Town of Hay River and will continue in easements (new and existing) both cross-county and adjacent to public road rights-of-way or other utility easements. The facility will terminate by tying into the existing 8-inch steel main near the intersection of County Road W and County Road WW. The Project is proposed to be in service by December 2018.

The Company has a longstanding commitment to working with landowners who may be affected by construction of various utility projects throughout the State of Wisconsin. The Company has a vested interest in working with landowners within the project to ensure their satisfaction with utility project construction and post-construction restoration.

The Company continues to be committed to restoring construction areas to pre-construction conditions with all our construction projects. We believe this Agricultural Mitigation Plan (AMP) will help to assure this outcome within agricultural areas in the proposed gas main replacement corridor. The Company has prepared this AMP specifically to prevent or mitigate potential adverse impacts of the project on agricultural productivity, using construction and restoration procedures from other Company projects and modifying them as necessary.

2. PURPOSE
The purpose of this AMP is to:
• provide a description of effective agricultural construction mitigation and restoration methods to be used on the project;
• establish personalized communication with agricultural landowners to ensure their unique concerns are addressed;
• provide agricultural landowners and tenants with a hotline for convenient contact access to the Company Representative;
• describe the job duties of the Company Agricultural Inspector (AI);

3. PROJECT DESCRIPTION
The Company is proposing two route options (Route A and Route B) for Public Service Commission of Wisconsin (PSCW) review designated as the Northwest Capacity Wilson Lateral Project (the “Project”). Route A is approximately 8.2 miles and Route B is approximately 9.5 miles in length. Construction of the main will be within a permanent easement of up to 50 feet in width. In addition, temporary easements will be needed during construction. Generally, an additional 25 feet of temporary easement is needed for work space and 50 feet of temporary easement is needed in agricultural areas to accommodate segregated soil storage.
A number of construction methods are proposed to construct this project including Horizontal Directional Drilling (HDD) and open cut trenching. Impacts to wetlands and waterways will be avoided, or minimized, to the extent practicable by using HDD construction methods. All bore pits will be placed a minimum of 25-50 feet outside of field delineated wetland boundaries.

4. SOILS
The soils in the project area are dominated by soils in the Hayriver, Plainfield, Drammen, and Dobie series, as discussed below.

The Hayriver series consist of well drained soils moderately deep to a paralithic contact with sandstone. These soils formed in loamy residuum or in a combination of thin loamy slope alluvium and in residuum from the underlying fine grained glauconitic sandstone on hills in bedrock controlled uplands. Permeability is moderate or moderately rapid in the solum and slow to moderate in the sandstone. Slopes range from 2 to 50 percent. Hayriver soils are on hills on bedrock controlled upland and formed in loamy residuum or in a combination of thin slope alluvium and residuum from fine grained glauconitic sandstone. Most of the steeper areas are used for woodland or pastureland. The native vegetation is mixed hardwood forest with a few conifers in some stands. Common trees are northern red oak, northern pin oak, sugar maple, American basswood, eastern white pine and quaking aspen. Some of the less sloping areas are used for cropland. Common crops are corn, small grain, and hay.

The Plainfield series consists of very deep, excessively drained soils formed in sandy drift on outwash plains, valley trains, glacial lake basins, stream terraces, and moraines and other upland areas. Slopes range from 0 to 70 percent. These soils formed in sandy drift. Many areas of Plainfield soils are cleared and used for cropland. Common crops are corn, small grains, and hay. Increasingly, these soils are irrigated and specialty crops such as sweet corn, potatoes, and snap beans are grown. Many areas of non-irrigated cropland have reverted to woodland or have been planted to pine trees. Native vegetation is mixed deciduous and coniferous forest. Common trees are jack pine, red pine, eastern white pine and northern pin oak.

The Drammen series consists of very deep, somewhat excessively drained soils. They formed dominantly in sandy alluvium or eolian sand on toe slopes and footslopes of sand sheets. Permeability is rapid in the upper sandy part and moderately rapid in the lower sandy lamellae. Slopes range from 1 to 20 percent. Most areas of Drammen soils have been cleared and are used for cropland. Corn, soybeans, small grains, and hay are the principal crops. Some have been planted to pine trees and a few areas remain in woodland. Native vegetation is mixed deciduous and pine forest.

The Dobie series consists of well drained soils moderately deep to a paralithic contact of sandstone on hills on bedrock controlled uplands. These soils formed in loess and in residuum from the underlying fine grained glauconitic sandstone. Permeability is moderate in the subsoil and ranges from slow to moderate in the sandstone. Slopes range from 2 to 30 percent. Dobie soils are on summits, shoulders, and back slopes of hills on bedrock controlled uplands. Dobie soils formed in loess and in loamy residuum from the underlying fine grained glauconitic sandstone. Most areas are used for cropland. Corn, small grain, and hay are the major crops. Native vegetation is mixed hardwoods, mainly sugar maple, northern red oak, and American basswood.
Several other soil units occur at a much lesser extent and are typically comprised of sand, sandy loam, and silt loam. The following table lists these soils for reference:

<table>
<thead>
<tr>
<th>Mapped Soil Unit Name</th>
<th>Mapped Soil Unit</th>
<th>Drainage Class</th>
<th>Hydric Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldo sand</td>
<td>516</td>
<td>Moderately well drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Arland fine sandy loam</td>
<td>804</td>
<td>Well drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Burkhardt sandy loam</td>
<td>453</td>
<td>Somewhat excessively drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Chetek sandy loam</td>
<td>454</td>
<td>Somewhat excessively drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Doritty silt loam</td>
<td>136</td>
<td>Moderately well drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Forkhorn sandy loam</td>
<td>433</td>
<td>Well drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Hoopeston sandy loam</td>
<td>438</td>
<td>Somewhat poorly drained</td>
<td>Partially Hydric Soil</td>
</tr>
<tr>
<td>Kevilar sandy loam</td>
<td>432</td>
<td>Moderately well drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Lows loam</td>
<td>429</td>
<td>Poorly drained</td>
<td>Predominantly Hydric Soil</td>
</tr>
<tr>
<td>Markey and Seelyville mucks</td>
<td>40</td>
<td>Very poorly drained</td>
<td>Predominantly Hydric Soil</td>
</tr>
<tr>
<td>Meehan loamy sand</td>
<td>588</td>
<td>Somewhat poorly drained</td>
<td>Partially Hydric Soil</td>
</tr>
<tr>
<td>Newson mucky loamy sand</td>
<td>589</td>
<td>Poorly drained</td>
<td>Predominantly Hydric Soil</td>
</tr>
<tr>
<td>Orion silt loam</td>
<td>628</td>
<td>Somewhat poorly drained</td>
<td>Partially Hydric Soil</td>
</tr>
<tr>
<td>Plainbo sand</td>
<td>573</td>
<td>Excessively drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Prissel loamy sand</td>
<td>546</td>
<td>Moderately well drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Quarderer silt loam</td>
<td>636</td>
<td>Moderately well drained</td>
<td>Partially Hydric Soil</td>
</tr>
<tr>
<td>Spencer silt loam</td>
<td>836</td>
<td>Moderately well drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Twinmound fine sand</td>
<td>282</td>
<td>Excessively drained</td>
<td>Non-Hydric Soil</td>
</tr>
<tr>
<td>Vancecreek silt loam</td>
<td>619</td>
<td>Poorly drained</td>
<td>Predominantly Hydric Soil</td>
</tr>
<tr>
<td>Wickware silt loam</td>
<td>135</td>
<td>Well drained</td>
<td>Non-Hydric Soil</td>
</tr>
</tbody>
</table>
5. SCOPE OF AGRICULTURAL MITIGATION
This AMP applies to those activities occurring on agricultural lands (tilled land row crops). “Agricultural land” as used here is understood to include rotated pastureland (except permanent pasture), all presently cultivated land including cropland, haylands, truck gardens, specialty crops, and land in government agricultural set-aside programs.

“Permanent pasture” as used here includes land devoted exclusively to pasture use, and not suited to tillage or crop rotation, as determined by the lack of any sustained crop history. “Construction area(s)” as used here includes all permanent or temporary workspace areas to be used by the Company for the purpose of constructing and operating the project, as well as lands on which aboveground facilities or other appurtenances related to the project will be located.

6. AGRICULTURAL INSPECTOR ROLE AND QUALIFICATIONS
The Company will have a project Construction Manager (“CM”) and an Environmental Manager (“EM”) for the project. To assist with on-site inspection and monitoring, the Company will hire an Agricultural Inspector (“AI”) for the Project.

The AI will be a qualified individual that will monitor the implementation of the AMP. The AI will have familiarity with agricultural operations and general construction, as well as knowledge in regards to agronomy and soil conservation. The AI will report directly to the EM and:

The AI will be thoroughly familiar with the following:
- Northwest Capacity Wilson Lateral Agricultural Mitigation Plan;
- gas lateral construction sequences and processes;

They also will:
- be familiar with techniques of soil conservation;
- be familiar with agricultural operations;
- possess good oral and written communication skills; and
- be able to work closely with the agricultural landowners, tenants and applicable agencies.

Contractors will be required to structure their construction activities to be consistent with the AMP.

7. AGRICULTURAL MITIGATION: PLANNING AND PRE CONSTRUCTION PHASE
The Company will communicate as needed with affected landowners and tenants of agricultural land to keep them informed of overall progress, explain mitigation actions, and to learn of any additional problems noted by landowners. No later than 30 days prior to the start of construction, the Company will provide landowners with a telephone number and address that can be used to contact the Company (also known as the Hotline Number). The phone number will include provisions for taking calls on evenings and weekends by use of an answering machine or voicemail system. The Company will respond promptly to calls or correspondence from landowners or tenants along the utility easement and/or right-of-way. Where the Company needs to consult or obtain concurrence from both the landowner and tenant of a property, they will make a good faith effort to do so. In the event, there is a disagreement between landowner and tenant with regards to a decision, the Company’s obligation will be satisfied by securing agreement with the landowner.
The Company will provide notice of any permanent changes in the status or use of agricultural lands to WDATCP at least 60 days prior to the beginning of construction.

The Company will develop training and implementation plans prior to construction.

At least 90 days prior to construction, the Company will provide WDATCP with available information collected for the Project Corridor on:

- Areas of cropland, pasture and specialty crops, including orchards, and fields with irrigation systems.
- Location of valve sites, meter and regulating stations, and other aboveground facilities, if any.
- Location of any known temporary access roads and laydown/storage areas. If additional areas are required for temporary construction use. To the extent practicable, the Company will identify suitable areas and provide this information to WDATCP prior to construction.
- This information will be provided with the understanding that locations of some facilities or their locations may be altered at a later date based on site specific conditions used at the site.

The Company will work with landowners to ascertain existing agricultural operations that may require special attention, such as conservation practices, location of above and below ground structures or obstructions, such as drain tile, irrigation systems, fencing, livestock, certified organic lands, proposed new drainage systems or other farm technology.

During the pre-construction phase, the Company will:

- Contact each landowner to obtain property specific information (such as drain tiles, conservation practices, etc.) to ensure these structures/ operation practices are noted on construction documents;
- review agricultural related project documents such as descriptions or maps of leased lands, permits, draft construction alignment sheets, and relevant plans prior to construction; and
- review information supplied by affected farm operators, conservation districts, agricultural extension agents, and others;
- educate construction crews through an environmental training session, to ensure they are familiar with AMP, agricultural concerns and issues that may occur;
- Negotiate with the farmland owner/operators to avoid the spreading manure over all areas within the proposed construction area prior to construction.

If any construction activities occur on a Certified Organic Farm, the Company will work with the landowner or tenant, the landowner and/or tenant’s certifying agent to identify site-specific construction practices that will minimize the potential for decertification as a result of construction activities. Possible practices may include: surveying/staking methods prior to construction (specifically non paint methods), equipment cleaning, use of drop cloths during welding and coating activities; removal and storage of additional topsoil; planting a deep-rooted cover crop in lieu of mechanical decompaction; applications of composted manure; or similar measures. The Company recognizes that Organic System Plans are proprietary in nature and will respect the need for confidentiality.

8. AGRICULTURAL MITIGATION: CONSTRUCTION AND RESTORATION PHASE
During construction and restoration, the AI’s role is to monitor the implementation of the Company AMP to avoid negative impacts to agricultural lands by advising the appropriate Company representative, either the EM or the CM, in the event incorrect construction methods are being used. The AI will generally be present on-site during construction, and will have access to all work areas in agricultural lands. The AI will travel between various construction activities in agricultural lands and spotcheck construction operations. If the AI discovers actions that do not appear to meet the AMP requirements, he may stop-work at that location if necessary and will immediately contact the EM or the CM who will determine if site-specific restoration action is necessary. They will also ensure that the erring contractors are trained in the appropriate construction methods.

In the event adverse weather conditions cause soil conditions to become unfavorable for construction or restoration activities at a given site, the AI will consult with the EM or the CM to temporarily halt activity at that location and will confer with them as to when activities should be resumed at the site.

9. AGRICULTURAL MITIGATION: CROP COMPENSATION
The Company will compensate the landowner for crop loss; compensation will be based on crop prices and yields for the County at the time of construction. Crop loss will occur during the construction of the project, which, depending on the timing of construction activities, may include one or two growing seasons. Payments will be made to landowners as soon as possible after construction is completed.

If the landowner rents or leases out the land to a tenant farmer (renter), then the renter will be compensated in lieu of the landowner.

10. BEST CONSTRUCTION MANAGEMENT PRACTICES (BMPs)
The Company require those working on the project to research, plan, implement, monitor, and assure the proposed results are obtained. The Company relies on these methods to identify agricultural concerns and implement measures to maintain agricultural productivity throughout construction and restoration. Appropriate use of these measures are assured by key field personnel such as the AI and the Company EM, CM, and Construction Inspector (CI). Additionally, the Company seeks to only use contractors with a consistent favorable history of installing and maintaining measures according to the BMPs. Thus, permit conditions, landowner satisfaction, and natural resources are preserved. The Company will incorporate the applicable provisions of this AMP and accompanying BMPs into all bid documents and contracts with each contractor retained on this project by the Company for construction, restoration, mitigation or post-restoration monitoring. Each contractor retained by the Company for the project must also incorporate the applicable provisions of the AMP into their contracts with each subcontractor on the project.

The Company utilizes construction techniques within agricultural areas that will insure future agricultural productivity. The following construction methods are to be utilized in agricultural areas:

a. Topsoil Segregation
During construction of the gas main, topsoil will be removed from the construction area and stockpiled separately from any other excavated soils. This will preserve the topsoil resource by eliminating the potential for topsoil/subsoil mixing. Topsoil is defined to include the upper most portion of the soil commonly referred to as the plow layer, the A horizon, or its equivalent in uncultivated soils. It is the surface layer of the soil that has the darkest color or the highest content of organic matter. All of the topsoil to a depth of 12 inches, or the entire original topsoil
depth if it is less than 12 inches, will be removed from excavated areas; however, topsoil will not be removed from under the topsoil storage piles. The Company has the option to remove amounts of topsoil in excess of 12” at its discretion.

The gas main will be installed via open cut trench, “plow” method and directional boring. The plow method of installation consists of using a vibratory plow which slices the soil open, allows installation of the pipe into the trench, then replaces the soil into its original location. The horizontal directional bore method consists of pipe installation using an auger to drill an underground tunnel, into which the pipe is drawing. The plow and bore method do not disturb the soil horizons. Open cut trenching will require separation of top and sub soils during excavation. For all excavations, top and sub soils will be replaced in their original soil horizons when backfilling. Landowners will be asked to refrain from manure spreading prior to topsoil removal. Erosion control measures will be used as necessary.

b. Temporary Access Road
The Company will attempt to utilize existing farm roads for access to and from the ROW where possible. In places where temporary access roads are constructed over agricultural land, topsoil will be stripped and temporarily stockpiled. If the temporary roads in agricultural lands require gravel stabilization, geo textile construction fabric will be placed below imported rock material for additional stability and to provide a distinct barrier between imported rock material and the subsoil surface.

Temporary roads will be designed to accommodate existing surface drainage patterns and to minimize soil erosion. During the restoration phase, both temporary and pre-existing access roads will be removed and the areas will be restored as close as reasonably possible to its pre-construction conditions. In the event the landowner wants the road left intact, a written mutual agreement between the Landowner and the Company will be established.

c. Clearing of Brush and Trees from the Easement
The Company will work with each landowner for the cutting of merchantable timber necessary for construction of the gas distribution system. Timber may be cut and left along the edge of the utility ROW for the landowner’s use or disposed of in various methods. Methods of disposal of trees, brush and stumps may include off-site burning, burial, chipping, or removal. Vegetation from cherry and walnut trees can be toxic to livestock. All debris from these trees will be removed from areas that are actively pastured such that it will not be allowed to come into contact with livestock and may not be stockpiled on site.

d. Fencing
Prior to construction The Company will work with landowners to determine if fences may be in the way of access for construction equipment. If necessary, existing fences may be removed and temporary fencing will be installed. Wire tension on temporary fences must be adequate to prevent sagging. Bracing of fences to trees or vegetation is prohibited. Fence materials, such as paint, must not be used as it is toxic to livestock.

Where livestock graze adjacent lands to construction areas, arrangements will be made with the landowner prior to construction to determine if temporary fences are necessary. The Company’s contractors will be responsible to close any gates as used throughout the workday.
Existing fence crossings removed due to construction activities will be repaired. Following construction, any temporary gates and fences installed for use by construction crews must be removed, unless the landowner approves otherwise. Permanent fences will be restored as closely as reasonably possible to their pre-construction condition.

e. Irrigation Systems
If project construction intersects an operational irrigation system on agricultural land, The Company and the landowner will establish a mutually acceptable amount of time that the affected irrigation systems may be taken out of service during construction. Water flow in irrigation systems on agricultural land is not to be disrupted by construction without first notifying affected landowners. Any damage to an irrigation system caused by construction will be repaired as soon as reasonably possible.

f. Erosion Control and Dewatering
Erosion controls such as silt fence, staked hay bales, and erosion matting will be used to prevent surface runoff from carrying sediment laden water onto adjacent lands. Dewatering may be required to remove standing water from trench or bore pit areas. Erosion control and dewatering technical standards are described on the Wisconsin Department of Natural Resources website (http://dnr.wi.gov/topic/stormwater/standards/). These standards will be met or exceeded at all times. It is not permissible to allow soil or water runoff to occur from non-organically farmed fields onto organically farmed fields at any time even if both fields are owned by the same landowner.

g. Drain Tile
The Company will work with each Landowner through the pre-construction process to determine location of known drain tiles. If a drain tile is damaged or severed in the course of construction, the tile will be repaired. A temporary repair with solid tubing to allow drainage while construction activities are completed may be used, or a permanent repair immediately installed.

Prior to backfilling soils at that location, the drain tile will be permanently repaired. Repairs may include support of the tile to maintain proper drainage gradient, replacement of tile and placement of subsoils free of large rocks and clumps around the tile to cushion it, and/or placement of filter cloths. Each repair will be documented to show proper actions have been taken to ensure future drainage and GPS coordinates of the repair location recorded.

h. Weed Control
Where the AI sees evidence that weed growth on stockpiled topsoil could present a problem to adjacent cultivated fields the AI will consult with the Company Representative to have the weeds removed or killed prior to topsoil replacement. If the Company chooses to spray the topsoil pile with herbicide, the landowner will be consulted in regard to the choice of herbicide to be used, taking into account their preference for cover crop and plans for the next year’s crop. If any herbicide spraying is completed, it will be done by a state licensed applicator.
i. Repair of Existing Agricultural Erosion Control Facilities
Existing agricultural facilities such as diversion terraces, grassed or lined waterways, outlet ditches, water and sediment control basins, vegetated filter strips, etc. damaged due to construction activities will be restored to pre-construction conditions. Photographs and elevation surveys may be taken as necessary prior to construction activities at the site to ensure final restoration is satisfactory.

j. Soil Restoration
The purpose of soil restoration is to ensure that soil strata are replaced in the proper order, decompacted, and that rock content of the upper 24 inches of soil is not increased. The Company will discuss rock and excess soil disposal with the landowner to determine acceptable disposal location(s) on the property. Heavy equipment will not be allowed to cross those agricultural areas that have been decompacted and restored.

De-compacting the Subsoil:
De-compaction of the subsoil will only be done when the subsoil condition is friable/tillable in the top 18 inches of the subsoil profile, using the Atterbeg Field Test as guidance (Attachment A). The AI may recommend to the Company specific locations for the decompaction of the subsoil in locations where soils appear to be either predominantly wet or in low lying areas where water ponding has occurred due to the “trench effect” as a result of topsoil removal. In these cases, the Company may consult with the landowner to determine the appropriate decompaction needs.

Equipment that can be used for soil decompaction may include a v-ripper, chisel plow, paraplow, or equivalent. Typical spacing of the shanks varies with equipment but is typically in the 8 - 24 inch range. The normal depth of tillage is 18 inches. The type of equipment used and the depth of rip may be adjusted as appropriate for different soil types or for a deeply and severely compacted area.

Subsoil compaction will normally be alleviated with three passes of the decompaction equipment. Multiple passes refers to the implement passing over the same soil band. That is, three passes of a 10 foot wide implement will treat a 10 foot wide band of soil, not a 30 foot wide band. Passes must be made in multiple directions. This can be achieved in the narrow areas by having the implement weave back and forth across the area being ripped.

Topsoil Replacement:
The topsoil will be replaced to its original depth across the spoil storage, trench, work, and traffic areas. The layer of replaced topsoil should be uniform across the right-of-way width, including any crowning. Topsoil should be replaced with wide tracked machinery or equivalent light loaded equipment to avoid compaction of the topsoil and subsoil layers. Rubber tired motor graders may be used to spread and level topsoil to address unevenness in the field. In areas where minimal tillage, no-till, or level land farming practices are employed, a tracked machine will be required to establish final grades.

De-compacting Through the Topsoil:
De-compaction through the topsoil may be necessary, if the subsoil and/or topsoil are compacted during topsoil replacement activities. A penetrometer will be used to determine if additional decompaction is necessary through the topsoil.

Final Rock Removal:
Replacing the topsoil (or de-compacting through the topsoil) may free some rocks and bring them to the surface. The size, density and distribution of rock remaining on the construction work area should be the same as adjacent areas not disturbed by construction.

Final Cleanup:
All previously restored construction area should not be traversed by unnecessary equipment traffic. All construction related debris, including litter generated by the construction crews, will be removed from the landowner’s property and disposed of appropriately. Final clean-up begins immediately after all the other above-mentioned sequence of restoration activities operations are completed, and not before. Final clean-up includes installation of permanent erosion control measures if necessary and disposal of construction debris and will be completed as soon as practicably possible (weather permitting), or as soon as possible thereafter. If final clean-up is delayed, temporary erosion controls will be installed as necessary.
Purpose: To determine when soil is suitable for tillage operations.

Process: The Environmental Inspector will determine the soil’s consistency using the following:

1. Pull a sample soil plug at the maximum depth to be tilled, or from within the topsoil pile.

2. Roll a portion of the sample between the palms of the hands to form a wire with a diameter of one-eighth inch.

3. The soil consistency is:
 a. Tillable if the soil wire breaks into segments not exceeding 3/8 of an inch in length.
 b. Plastic (not tillable) if the segments are longer than 3/8 of an inch before breaking.

4. This procedure is to be used prior to decompacting the subsoil; on the topsoil pile prior to stripping and stockpiling; on the topsoil prior to replacement; and prior to decompacting through the topsoil.

5. One determination of soil consistency is adequate until the next rain event.
Purpose: To define the locations and limits of rights-of-way and additional temporary workspaces, in order to minimize the impacts to agricultural lands.

Organization: WISCONSIN GAS onsite construction inspection personnel will monitor and enforce the measures described, in concert with the Agricultural Inspector (AI), for pipeline construction operations within agricultural lands.

Installation Planning
1. WISCONSIN GAS will determine the required right-of-way widths over the length of lands traversed by the pipeline, including extra workspaces.
2. WISCONSIN GAS will show the specific limits of rights-of-way on alignment sheet drawings which will be provided to the construction contractor, environmental consultants and inspection personnel.
3. WISCONSIN GAS will provide the construction contractor, environmental consultants and inspection personnel with the right-of-way configuration drawings and other figures referred to by the BMPs developed for the project.
4. WISCONSIN GAS will obtain the appropriate environmental and right-of-way clearances prior to entry on any land affected by construction of the pipeline, or notify all parties of areas of special concern or areas for which clearance is withheld.

Construction
1. The limits of the right-of-way and all additional temporary workspaces will be staked prior to work commencing at that location.
2. For Construction Easements in Agriculture Lands a right-of-way width of 100 foot is required and topsoil stripping will be the complete right-of-way width excluding the topsoil stockpile area. This consists of a 50 foot temporary construction easement and a 50 foot permanent easement. The running centerline of the pipeline will generally be 15' from one side of the 50 foot permanent easement. See Construction Figures, Detail 27.
3. For Construction Easements in non-cultivated Wooded Lands or Wetlands a right-of-way width of 75 feet is required. This consists of a 25 foot temporary construction easement and a 50 foot permanent easement. Where feasible existing corridors are being utilized to reduce the impact of tree clearing. In areas where the gas main will be installed by horizontal directional drilling a 50 foot permanent easement will be required but the 25 foot temporary easement will not be necessary.
4. Additional temporary workspace will be required for stream crossings, road bore crossing areas, uplands on either side of wetlands, and equipment turnaround areas. WISCONSIN GAS will determine the amount of additional right-of-way needed for construction and restoration on agricultural land as per these BMPs.
5. Should a situation arise where the approved workspace is not adequate to implement the agricultural BMPs, work will be stopped at the respective location until WISCONSIN GAS determines an appropriate course of action. For example, triple lift soil segregation may require an additional 25 feet in the temporary construction easement as necessary to allow separation of the three stockpile areas.
Purpose: To preserve the topsoil resources by eliminating the potential for topsoil / subsoil mixing in agricultural lands.

Installation Planning

1. During right-of-way negotiations for easements on agricultural lands, WISCONSIN GAS will identify full topsoil removal as the only alternative.

2. The topsoil is defined to include the upper most portion of the soil commonly referred to as the plow layer, the A horizon, or its equivalent in uncultivated soils. It is the surface layer of the soil that has the darkest color or the highest content of organic matter.

Construction

Full Topsoil Removal

1. The WISCONSIN GAS operator or construction contractor will oversee determination of the topsoil depth. This will be completed as construction progresses.

2. All of the topsoil to a depth of 12 inches, or the entire original topsoil depth if it is less than 12 inches, will be removed from the subsoil storage area, the trench area, and the rest of the temporary right-of-way (work and traffic areas); however, topsoil will not be removed from under the topsoil storage piles or areas where construction mats are laid on the surface for material storage or equipment travel. WISCONSIN GAS has the option to remove amounts of topsoil in excess of 12” at its discretion.

3. All subsoil material removed from the pipeline trench will be stockpiled separate from the topsoil stockpile. The subsoil material will be stockpiled in the subsoil storage area.

4. Additionally, all topsoil to a depth of 12-inches will be stripped from newly constructed temporary access roads, temporary storage areas, and temporary construction areas associated with stations, mainline valves, and pig launchers located on agricultural land. It is intended that existing field access roads will not be stripped of any existing cover.

5. Topsoil will be removed prior to cut/fill grading operations.

Partial Topsoil Removal

1. There will be no Partial Topsoil Removal on agricultural lands.
Purpose: To minimize the effects of erosion to lands affected by construction, and adjacent properties, and to prevent silts and sediments from being transported off the right-of-way or into natural resources.

Installation Planning

1. WISCONSIN GAS will conduct training of inspection personnel and contractors to ensure all parties have a thorough understanding of the erosion control requirements to be utilized on the project. The training will include a review of the requirements of WISCONSIN GAS Northwest Capacity Wilson Lateral Project Construction Diagrams AMP, and BMPs. Such training will identify the authorities of the inspection personnel, the criteria for placement of the particular erosion structures, and the procedure to be followed in the event that a violation of these practices appears to have occurred.

2. WISCONSIN GAS will advise the construction contractor of all known areas of special concern.

3. WISCONSIN GAS will require its construction contractor to structure its work in a manner that is consistent with the requirements of the documents listed in Paragraph 1 above, and to maintain an adequate supply of approved erosion control materials necessary for providing an appropriate level of control.

Construction

Temporary Erosion Control

1. Temporary erosion controls will be constructed after initial disturbance of the soil, and will be properly maintained throughout construction. The erosion control structures will be inspected as described below and reinstalled as necessary (such as after backfilling of the trench) until they are either replaced by permanent erosion controls or restoration is complete.

2. Temporary slope breakers will be constructed where necessary to reduce runoff velocity and divert water off of the construction right-of-way. Temporary slope breakers may be constructed of materials such as soil, silt fence, staked hay or straw bales, sand bags, or wattles.

3. Unless otherwise specified as a permit condition, temporary slope breakers will generally be installed using the following spacing:

<table>
<thead>
<tr>
<th>Slope %</th>
<th>Spacing (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 - 15</td>
<td>300</td>
</tr>
<tr>
<td>>15 - 30</td>
<td>200</td>
</tr>
<tr>
<td>>30</td>
<td>100</td>
</tr>
</tbody>
</table>

4. The outfall of each temporary slope breaker will be directed off the construction right-of-way to a stable, well-vegetated area or energy-dissipating device at the end of the slope breaker and off the construction right-of-way. Discharge of water shall not be made in a way that can runoff from non-organic farm operations onto adjacent organic farm operations.

5. The integrity of slope breakers will be confirmed, during active construction on a daily basis and during inactive construction on a weekly basis. In areas with no construction or equipment operation, integrity of slope breakers will be confirmed within 24 hours of each 0.5-inch of rainfall. Slope breakers found to be ineffective will be repaired within 24 hours of identification.

6. The placement of temporary slope breakers will be coordinated with the placement of trench/ditch plugs. Trench/ditch plugs will be installed at the boundaries of certified organic farming to ensure that the pipeline does not provide a surface or subsurface drainage path from the surrounding area to the certified organic farm during construction.
7. Slope breakers will be of adequate height and width to contain and divert a significant rain event. Additionally, slope breakers will be constructed with a two to eight percent outslope to a stable area. In the absence of a stable area, appropriate energy-dissipating devices will be used to direct the flow off of the construction right-of-way. The slope breaker will be compacted during its construction to prevent the water from eroding through the berm. The inlet end of the berm will be located to prevent water from traveling around the berm.

8. The outlet of the slope breaker will be stable enough to filter sediment from the water and retain the sediment within the existing vegetation.

Sediment Barriers

1. Sediment barriers will be installed to stop the flow of sediment. They may be constructed of materials such as silt fence, staked hay or straw bales, sand bags, wattles, or equivalent.

2. Temporary sediment barriers will be installed at the base of slopes adjacent to road crossings until disturbed vegetation has been reestablished and at appropriate locations to prevent siltation into water bodies or wetlands crossed by, or near, the construction work area.

3. Temporary sediment barriers will be maintained until permanent revegetation measures are successful or the upland areas adjacent to wetlands, water bodies, or roads are stabilized. Temporary sediment barriers will be removed from an area when that area is successfully restored.

Mulch

1. In general, mulch will not be used as an erosion control measure in agricultural lands. In the event mulch is required by WISCONSIN GAS in consultation with the landowner in agricultural lands, the mulch will be applied according to We-Energies Erosion Control Standards and Procedures.

Permanent Erosion Control Devices

1. To prevent subsurface flow of water through the pipe trench, trench breakers will be installed.

2. The following reference table can be used to locate trench breaker spacing on areas with slopes greater than 5%.

<table>
<thead>
<tr>
<th>Slope (%)</th>
<th>Spacing Recommendations (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 – 15</td>
<td>300</td>
</tr>
<tr>
<td>>15 - 30</td>
<td>200</td>
</tr>
<tr>
<td>> 30</td>
<td>100</td>
</tr>
</tbody>
</table>

3. When permanent trench breakers are installed in the trench prior to backfilling, they will consist of sandbags, earth-filled sacks or other approved material. Topsoil will not be used for trench breakers. Trench breakers are required to have a minimum bottom width of two sacks wide.

4. Trench breakers will be installed to a minimum elevation of one-foot above the top of the pipe. The top of the trench breaker must be two feet or more below the restored surface on agricultural land.
Purpose: To ensure that any tile line damaged during construction is repaired to a condition that is functionally equivalent to its condition prior to construction and to avoid adverse impacts to planned or proposed drainage systems.

Installation Planning

1. Identify fields containing drain tiles through contact with landowners, the local Land Conservation District, and the USDA-Natural Resources Conservation Service staff. All drain tiles will be photographed and GPS documented pre-construction and post-construction.

2. Flag all identified drain tiles within the right-of-way after clearing and grading, and prior to trenching.

3. WISCONSIN GAS will document proposed drain tile plans that the landowner may plan to install within the three years following construction.

4. WISCONSIN GAS will identify local drain tile installation contractors and consult with the landowner to determine whether the landowner would prefer repair/replacement services (if necessary) be provided by a local contractor.

5. WISCONSIN GAS will document existing moisture content.

Construction

1. The excavated pipeline trench shall provide a minimum of 12 inches clearance, where practicable, between the pipe and the drainage tile.

General Conditions

1. WISCONSIN GAS will use the construction contractor or their sub-contractor to replace, relocate or reconfigure existing tile lines as may be required.

2. WISCONSIN GAS will take the necessary actions to ensure the functioning of the tile lines will be equivalent to its prior condition where tile lines adjacent to the pipeline’s right-of-way are adversely affected by the construction of the pipeline. This may include the relocation, reconfiguration, and replacement of the existing tile lines within the construction corridor. The repaired drain tile will be verified that it was installed correctly and WISCONSIN GAS will make an effort to understand the existing conditions within the limited pipeline ROW.

3. The quality of all clay and concrete drain tile and corrugated polyethylene tubing to be installed shall be appropriate for the work as determined by the AI and/or qualified drain tile repair contractor. Material to be installed will meet American Society of Testing Materials (ASTM) standards.

4. Any drain tile removed from the pipeline trench will not be reused.

5. WISCONSIN GAS will repair or correct tile or drainage problems caused by construction of the pipeline immediately, upon written notice from the landowner to WISCONSIN GAS of such a problem, unless WISCONSIN GAS can demonstrate that the problem identified by the landowner was not caused by actions performed during such construction or restoration. WISCONSIN GAS may arrange a pay settlement to the landowner.

Locating Damaged Drains

1. All drains found during trenching will be flagged.
2. Drains that are located within the right-of-way, but are not located within the trench, will be probed (examined) for damage.

Temporary Repairs

1. All exposed tiles will be capped or screened with window screen or equivalent to protect against soil intrusion when the trench is dug, whether repaired immediately or later.

2. Any flowing tile line will be repaired as soon as practicable with solid tubing, until permanent repairs can be made.

3. Temporary repairs are needed if a flowing drain will be stopped for longer than 24 hours.

Permanent Repairs

1. All permanent tile line damaged within the trench area will be repaired prior to backfilling at the respective location.

2. Where tile lines are severed by construction of the pipeline trench, angle iron, three-sided steel channel iron, I-beams, full round slotted pipe, perforated plastic pipe or half pipe will be used to support the repaired tile line. The support members must extend a minimum of 2-feet into previously undisturbed soil. If the tile repairs involve clay tile, the support member will extend to the first tile joint beyond the minimum 2-foot distance.

3. Each tile drain’s slope (gradient) will be maintained by providing sufficient support to prevent the drain line from sagging. Sandbags, bags of concrete, Sakrete, or equivalent can be used as support under repaired tile lines. The grade of the tile line should remain unchanged.

4. If the tile is clay, ceramic or concrete, any connection with new material must be made with commercially available connectors, or wrapped with plastic or effectively sealed to prevent soil intrusion.

5. To avoid the risk of damaging (crushing) the tile lines with large soil clumps or stones during backfilling loosened native subsoil free of large soil clumps and stones should be placed on top of, and to the sides of, the tile line. Where appropriate native subsoil is not available, imported subsoil free of clumps and stones, or pea gravel, can be used to cushion the tile line.

6. Filter-covered drain tiles will be used where the existing tile line is covered with a filter.
Purpose: Pump water from an open trench or other excavated area while controlling the rate of discharge to avoid:

- Permanent or temporary erosion and scour;
- Damage to adjacent agricultural land, crops, or pastureland;
- Inundating crops for more than 24 hours, including rainfall;
- Depositing sand, silt, or sediment in or near a wetland or waterbody;
- Depositing gravel in fields, pastures, or watercourses; and
- Damaging cultural resources sites, locations of sensitive plant species and organic farming operations.

Typically, the trench will need to be dewatered for purposes of, but not limited to, tie-ins, measuring the trench for bends, lowering-in pipe, trench inspection, and back-filling the trench. Water discharge from hydrostatic testing following backfilling shall follow the same protocols described here when applicable.

Installation Planning

1. Water will be discharged in an upland area so any sediment, stones, and silt-laden water will not deposit material in a sensitive area adversely impacting the hydrology or plant communities. The contractor should have sufficient intake or outlet hose (250 - 350 feet) to reach the nearest appropriate upland area.

2. WISCONSIN GAS and their construction contractors will identify during construction activities:
 - Low areas along the pipeline route that are likely to collect water during construction, and
 - Suitable areas for the discharge of water accumulated within the pipe trench or other excavated area
 - Identify accumulated water that needs to be discharged as construction progresses

3. WISCONSIN GAS will require its construction contractors to obtain:
 - WISCONSIN GAS approval of all off-right-of-way and on-right-of-way discharge locations and techniques, and all trench dewatering discharge locations and techniques
 - WISCONSIN GAS may obtain voluntary permissions with landowners

4. WISCONSIN GAS will require its construction contractors to structure the work to minimize the accumulation of water within the trench.

5. In the event it is not possible to avoid water-related damages as described above, WISCONSIN GAS will:
 - Reasonably compensate the landowner for the damages, and
 - Restore the cropland and crops, pastureland, water courses, and any other damaged lands to their pre-construction condition.

Construction

1. All dewatering activities will be conducted in compliance with current drainage laws, local ordinances relating to such activities, WDNR permit conditions, and the provisions of the Clean Water Act.

2. Rainwater or groundwater that collects in the trench will be pumped:

BMP 05 - Trench Dewatering
Onto a well-vegetated area that will prevent the water from returning to the right-of-way, or

Into a filter bag or a settling basin constructed of straw bales when adequate vegetation is absent or when in the vicinity of a wetland or waterbody.

Additionally, sediment barriers or similar erosion control measures may be used as necessary to divert the flow of pumped water.

3. To minimize the extraction of silt or sediment from the trench the intake will be prevented from touching the bottom or side of the trench. A flotation device or a support will be attached to the intake of the suction line to prevent sucking up soil and other debris from the trench.

4. All structures will be located in a stabilized and vegetated area with a minimum buffer width of 100 feet between it and any adjacent water body or wetland area. Sediment barriers or similar erosion control measure will be installed if an adequate buffer is not available.

5. Preferably, dewatering efforts will not deliver water onto cropland. If it is absolutely necessary to do so, the crops will be inundated (flooded) less than 24 hours.

6. The dewatering activities will not deposit gravel, sediment (mud) or other debris in fields, pastures, or watercourses.

7. Dewatering sites will be selected, and structures and slope breakers will be installed, to ensure that water is not directed into known cultural resources sites or locations of sensitive plant communities.

8. Backfill activities will begin as soon as possible after pipe installation to prevent the trench from refilling with water in high water table conditions. Attempts to dewater as far from the back-filling activity as possible will be made.

9. Dewatering will be monitored and stopped, if necessary, to correct conditions and practices that do not comply with this best management practice.

10. Discharge of water from the trench of non-organic farm operations and hydrostatic testing shall not be made in a way that can runoff onto adjacent organic farm operations.
Purpose: To restore the contour and to ensure the quality and agricultural productivity of the soil by:
- Avoiding the mixing of the topsoil with the subsoil, and
- Eliminating compaction from the subsoil and topsoil layers, and
- Assuring the rock content of the upper 12-inches of topsoil and subsoil is not increased after completion of the construction and restoration process.

Installation Planning

1. WISCONSIN GAS will identify, through consultation with the landowner, all rock disposal location(s) on the ROW or adjacent to the ROW. This location can be on the construction right-of-way of the landowner’s property. Written permission from the landowner is required for disposal at another site on the farm.

2. WISCONSIN GAS will consult the landowner about properly disposing of excess excavated material to maintain agricultural productivity.

3. Successful restoration of the soil requires that the proper equipment be used, in the proper sequence, under the correct soil moisture content conditions. Each step in the restoration process is completed before moving to the next step. De-compaction will occur as determined necessary by the Agricultural Inspector (AI) and in consultation with the contractor and landowner.

4. Heavy equipment will not be allowed to cross those agricultural areas that have been de-compacted. In the event any area of previously restored right-of-way that is traversed by equipment for any reason (e.g. to reach a hydrostatic test location) which results in further compaction, the area will be appropriately restored.

Construction:

Backfilling

1. After installation of the pipeline is complete, the trench materials will be backfilled in the order in which they were removed.

Crowning the Trench

1. Crowning the trench area will compensate for ground settling or subsidence. The crown shall be constructed with native topsoil material. Topsoil from adjacent ROW areas will be used (if needed) for crowning to avoid the potential for mixing of subsoil and topsoil in the event settling is overestimated. The AI will determine the height of the crown based on soil type and moisture content. Breaks will be left in the crown to accommodate existing surface drainage systems while the crown settles over the first year post construction.

2. Crowning the trench will be used when necessary and performed per WISCONSIN GAS standards.

3. If in the first growing season post-construction the landowner determines that the crown area may have settled too much or too little and is causing a problem with agricultural activity, WISCONSIN GAS will consult with the landowner to determine what corrective action may be needed to restore the crown area to its pre-construction topography and productivity.

De-compacting the Subsoil

1. Deep subsoil ripping shall be carried out on all traffic and work areas of agricultural right-of-way where full corridor stripping of topsoil occurred. This includes the pipeline workspaces, temporary workspaces, and temporary access roads. It does not include the area over the trench.

2. De-compaction of the subsoil will only be done when the subsoil condition is friable/tillable in the top 18-inches of the subsoil profile as determined by the AI. The AI, using their best judgment, may need to allow the de-compaction of the subsoil in areas where soils appear to be either predominantly wet
or in low lying areas where water ponding has occurred due to the “trench effect” as a result of topsoil removal. In these cases the Al will consult with, and receive approval from, the landowner or tenant.

3. Ripping equipment to be used will be selected based on successful use on previous pipeline projects such as the v-ripper, chisel plow, paraplow, or an equivalent. WISCONSIN GAS may, at their discretion, choose to compensate the landowner to chisel plow his impacted land(s).

4. The normal depth of tillage is 18-inches. The Al will provide guidance on the appropriate depth of rip in special situations or soil types. For example, a depth of 6 to 8-inches may be appropriate on intensively drained mineral (lacustrine/alluvial) soils. A depth of 22-inches may be appropriate for a deeply and severely compacted area.

5. The optimal spacing of the shanks will depend on the ripping equipment, soil type and moisture content, but will typically be in the range of 8 to 24-inches. Shanks are at their optimum spacing when the implement shatters the soil area between the shanks. Shatter is evidenced by the soil lifting between the shanks as the implement passes. The Al can assist the contractor in selecting the appropriate shank spacing.

6. Subsoil compaction will normally be alleviated with three passes of the de-compaction equipment. Multiple passes refers to the implement passing over the same soil band. That is, three passes of a 10-foot wide implement will treat a 10-foot wide band of soil, not a 30-foot wide band.

7. Passes must be made in multiple directions. This can be achieved in the narrow pipeline right-of-way by weaving the implement back and forth across the area being ripped.

8. If de-compaction was not successful, the de-compaction effort will continue. The contractor is required to make as many passes as necessary to alleviate compaction. If the de-compaction effort is not successful after additional passes, a change in the de-compaction equipment used would be appropriate, and determined with guidance from the Al.

Topsoil Replacement

1. The topsoil will be replaced to its original depth across the spoil storage, trench, work, and traffic areas. The layer of replaced topsoil should be uniform across the right-of-way width, including the crown over the trench.

2. Topsoil should be replaced with small tracked machinery or equivalent light loaded equipment to avoid compaction of the topsoil and subsoil layers. Rubber tired motor graders may be used to spread and level topsoil to address unevenness in the field due to pipeline construction. In areas where minimal tillage, no-till, or level land farming practices are employed, a motor grader will be required to establish final ROW grades.

De-compacting Through the Topsoil

1. De-compaction through the topsoil may be necessary if the subsoil and/or topsoil are compacted during topsoil replacement activities.

Final Rock Removal

1. Replacing the topsoil (or de-compacting through the topsoil) may free some rocks and bring them to the surface.

2. The size, density and distribution of rock remaining on the construction work area should be the same as adjacent areas not disturbed by construction.

Final Cleanup

1. Any area of previously restored right-of-way should not be traversed by unnecessary equipment traffic. All construction-related debris, including litter generated by the construction crews, will be removed from the landowner’s property and disposed of appropriately.
2. Final clean-up begins immediately after all the other above-mentioned sequence of restoration activities operations are completed, and not before. Final clean-up includes installation of permanent erosion control measures and disposal of construction debris and will be completed within 14 days after backfilling in the area, weather permitting, or as soon as possible thereafter. Final clean-up shall not be delayed until the end of the next seeding season. If final clean-up is not completed within the 14-day time period, temporary erosion controls will be installed.
Purpose:
1. To place the seed into the soil at the correct time and proper depth to promote sufficient seed-soil contact on cropland or pasture requiring seeding.
2. To prepare the soil surface of an exposed area by natural or artificial means, such as tilling and fertilizing.
3. To minimize topsoil erosion on disturbed agricultural areas.

Installation Planning
WISCONSIN GAS will reseed over the entire right-of-way following final clean-up. WISCONSIN GAS will not apply seed to certified organic farms, prior to consulting with the landowner regarding how reseeding will be accomplished.

1. WISCONSIN GAS will attempt to identify properties during the pre-construction phase where cropland seeding procedures or pasture seeding procedures will be used.
2. During recommended seeding periods, seedbed preparation should immediately follow soil restoration as soon as weather conditions and individual right-of-way requirements permit.
3. Seeding will be completed immediately after finishing seedbed preparation, weather permitting. Temporary erosion control measures will be used if this timeframe cannot be met.
4. For seeding outside of the recommended seeding periods, temporary erosion control methods will be used.
5. WISCONSIN GAS will consult with the landowner to determine the seed mix, if appropriate.

Construction
Seed Selection
1. An annual oat, wheat, or similar grain will be used for erosion control on crop land and a special pasture seeding mix will be used for all pastures.

Seedbed Preparation for Conventional, Broadcast and Hydroseeding
1. The ideal condition for conventional seeding is a smooth, firm, clod-free soil for optimum seed placement with drills or cultipacker seeders, if appropriate for that type of seed. The soil should be firm enough at planting for an adult footprint to sink no deeper than 3/8-inch. Avoid overworking the soil because rainfall following seeding may crust the surface, preventing seedling emergence.
2. If the area to be seeded has been recently loosened, and will provide an adequate seedbed, no additional tillage will be required.
3. If the area to be seeded has been compacted or crusted, the top layer of soil will be tilled.
4. Spike-toothed harrows may also be used during seedbed preparation. The spikes of the harrow will dig lightly into the soil to break up soil masses. Harrows may also be used to cover broadcast seed.
5. The seedbed will be scarified to create sites for seed to lodge and germinate where broadcasting the seed or hydroseeding will be used.

Seeding
1. Seeding of permanent cover will be done, whenever possible, during the recommended seeding date ranges for west central Wisconsin.
2. If seeding cannot be accomplished before the recommended October 15 seeding deadline, it will be done in conformity with the Critical Area Planting conservation practice standard of the NRCS, or temporary erosion controls will be implemented and the seeding of permanent cover done at the beginning of the next seeding season.
3. Any soil disturbance occurring outside of the recommended October 15 seeding deadline date, or any bare soil left unstabilized by vegetation, will be treated as a winter construction condition and appropriate erosion controls will be installed to minimize erosion over winter and spring thaw.

4. After seedbed preparation, the seed mixes of all the permanent grasses or legume plantings will be applied at the rate determined from the Agricultural Inspector, landowner or recommended by the USDA-Natural Resources Conservation Service (NRCS).

5. In areas where a different seed mix is proposed, seeding will conform to the Critical Area Planting conservation practice standard of the NRCS, Conservation Reserve Program or any other similar federal program.

6. Grass waterways and terraces will be seeded to reestablish grass cover similar to preconstruction conditions. Erosion control measures, such as mulch or erosion control fabric, will be used in conjunction with seeding.

7. If a Certified Organic Farm will be impacted by construction, WISCONSIN GAS will coordinate with the affected landowner to ensure that an appropriate seed mix and planting methods are used as required by the farm’s Certification Plan.
WISCONSIN GAS NORTHWEST CAPACITY WILSON LATERAL
PROJECT
BMP 08 - Crop Compensation

Purpose: To ensure that agricultural landowners are fairly compensated for loss of crop production due to the pipeline project.

Planning:

1. WISCONSIN GAS will compensate the landowner for crop loss once at the beginning or the end of the project. If the landowner rents or leases out the land to a renter, then the renter will be compensated in lieu of the landowner. There will be an attempt to communicate the agreement of compensation to both the renter as well as the landowner.

2. The value of the crop will be determined by the Payment Worksheet in the Easement Agreement Package. Crop compensation will be based on September/October 2016 futures and will be adjusted upward in year of construction if crop prices increase, but will not change if crop prices decline.

3. The landowner/renter will be compensated a total of 200% of the value of the crop based on the calculation in Item 2 above. 100% of the value of the crop during the year of construction, 60% the first year after construction, and 40% the second year after construction.

4. The landowner/renter would signify agreement by signing a damage release form.
Purpose: To maintain the root zone over the trench area to the extent practicable through management of the topsoil, and subsoil layers in areas where the subsoil qualifies for this three-lift protocol.

Organization: The contractor will be responsible for implementing the three-lift soil-handling method. The Agricultural Inspectors (AI) will be available to assist in making “field calls” such as identifying boundaries between soil layers and to monitor compliance with this BMP.

Installation Planning:
1. In areas where the AI determines the need to apply the triple-lift soil handling practice during trenching operations, an attempt will be made in preconstruction planning to ensure that adequate construction right-of-way space is made available. WISCONSIN GAS will compile a list of potentially affected farmland owners whose land is eligible for triple lift soil handling during excavation of the trench. This will be obtained from NRSC Soil Maps and/or original soil maps for each county. This list of qualifying "candidate" soils and parcels will be provided to the Wisconsin Department of Agriculture, Trade, & Consumer Protection (WDATCP) and to the Agricultural Inspectors (AIs).

2. The criteria for soils qualifying as "candidates" for the three-lift soil handling procedure are determined by WDATCP on lands that involve cultivated croplands, rotated pastureland, or government set-aside program land. Locations of tree-lift soil handling will be confirmed by the AI.

3. Where applicable, WISCONSIN GAS will inform landowners possessing lands containing soils within the construction right-of-way (ROW) that meet the three-lift soil handling criteria and offer landowners the option of implementing the three-lift soil trenching procedure on their property during construction.

4. WISCONSIN GAS will include in the construction bid documents explanation of the three-lift soil handling procedure along with the potential locations. WISCONSIN GAS will also review the process and the potential locations with the bidders during the pre-bid job showing to ensure the potential contractor is well acquainted with the expectations. WISCONSIN GAS will also review this process and the potential locations with the selected construction contractor during the construction “kick-off” meeting. The three-lift soil handling process will also be included in WISCONSIN GAS’s environmental training sessions required for all field personnel prior to working on the construction right-of-way.

Construction:
1. WISCONSIN GAS may perform additional soil sampling to confirm the depth and extent of soil layers.

2. All topsoil up to a depth of at least 12 inches of will be stripped and stockpiled along the edge of the working side of the construction ROW.

3. After topsoil has been removed (first lift) and trenching begins, a backhoe will remove the upper portion of the subsoil (second lift) and place this layer as far from the trench as the reach of the equipment permits on side of the construction ROW.

4. Where the subsoil material changes the backhoe operator will place this underlying material (third lift) between the trench and the second-lift pile on the side of the right-of-way. Since the depth at which the underlying material is encountered will vary from location to location, the boundary between the upper subsoil and the underlying material will be determined visually by the construction and inspection team, with the advice of the AI when necessary.

5. WISCONSIN GAS will attempt to maintain separation between the two piles. Depending on the available workspace and the volume of soil involved, maintaining complete separation between these two piles may not be possible.

6. During backfilling, the operator will make every effort to place the lower subsoil pile material (third layer) of the spoil material in the trench first, and will only then replace the upper subsoil layer (second layer) of the spoil material in the trench.
7. WISCONSIN GAS will perform field adjustments as necessary in conjunction with the contractor and AI to ensure lower subsoil or parent material does not become mixed with the upper subsoil by the proper placement of the spoil piles to the extent practicable.
WISCONSIN DEPARTMENT OF AGRICULTURE, TRADE AND CONSUMER PROTECTION

DIVISION OF
AGRICULTURAL RESOURCE MANAGEMENT
Agricultural Impact Program
P.O. Box 8911
Madison, WI 53708-8911
608-224-4650

https://datcp.wi.gov/Pages/Programs_Services/AgriculturalImpactStatements.aspx