2022 Field-Edge Groundwater Monitoring Program

ANNUAL REPORT

Wisconsin Department of Agriculture, Trade and Consumer Protection

Agricultural Resource Management Division

Environmental Quality Unit

04-17-2024

Table of Contents

List of Figures	0
List of Tables	0
Introduction	1
Purpose of Field-Edge Groundwater Monitoring	1
Program Approach	
Program Assets and Infrastructure	
1985-1989 Original Monitoring Wells and Piezometers	
2005 Monitoring Program Expansion	
2010 University Wisconsin-Oshkosh Wells	
2011 Monitoring Program Expansion	
2017 Monitoring Program Expansion	
2021 Monitoring Program Expansion/Abandonment	
2022 Results	6
Grower Responses	
Water Level Measurements	8
Pesticide Detection Frequency	13
Comparison to Standards	14
Other Notable Observations	
Neonicotinoids:	16
Alachlor:	17
Atrazine:	17
Nitrogen:	18
2022 Program Goals and Objectives	21
Acknowledgments	
References	22
Appendix A	23
Acronyms	23
Definitions	25
APPENDIX B	26

List of Figures

Figure 1: 2022 Monitoring Well Sites	4
Figure 2: Accumulated Precipitation from the Wisconsin Monthly Climate Watch Archive	8
Figure 3: 2022 Monthly Precipitation Totals for Sampling-Site Counties from the NOAA Monthly Climate Wa	
Figure 4: Wisconsin Monthly Precipitation Departures (from 1991-2020 Average) for 2022	10
Figure 5: Wisconsin Accumulated Precipitation (in): Departure from 1991-2020 Average	11
Figure 6: Historic Water Table Level Data for a Field-Edge Monitoring Station AD2 in Adams County	12
Figure 7: Historic Water Table Level Data for a Field-Edge Monitoring Station DU1 in Dunn County	12
Figure 8: Historic Water Table Level Data for a Field-Edge Monitoring Station IW1 in Iowa County	13
Figure 9: Percentage of 2022 Samples with Detectable Pesticide Concentrations (Includes all analytes determin 20% or more of all samples collected)	
Figure 10: 2022 Atrazine TCR Concentrations Relative to Groundwater Sample Well Depth	18
Figure 11: Nitrogen as Nitrate plus Nitrite Results Distribution in Groundwater Samples from All-Wells	19
Figure 12: 2022 Nitrogen as Nitrate plus Nitrite Concentrations relative to Groundwater Sample Well Dept	.h_ 20
Figure 13: 2022 Nitrogen as Nitrate plus Nitrite Concentrations Variability from Spring to Fall at Individual Wells	
Figure 14: 2022 Nitrogen Concentrations Variability by Depth from Spring to Fall of Individual Wells	21
List of Tables Table 1: Crops Grown and Nitrogen Applied on Fields Adjacent to Field Edge Stations Table 2: Detected Parent Compounds That Have No Wisc. Admin. Code ch. NR 140 Standard or WDHS Drink	king
Water Health Advisory Levels	
Table 3: Average Nitrogen as Nitrate plus Nitrite Concentration Over Previous Years	19
Table B 1: Field-Edge Groundwater Monitoring Program - Monitoring Wells and Piezometers Construction Specifications	26
Table B 2: 2022 Sample Analytes, Applicable Wis. Admin. Code ch. NR 140 PALs & ESs, Drinking Water Hea Advisories, and Reporting Limits	lth
Table B 3: Field-Edge Groundwater Monitoring Program - 2022 Groundwater Analytical Results	29
Table B 4: Field-Edge Groundwater Monitoring Program - 2022 Land Pesticide/Nitrogen- and Irrigation-Use Provided by Growers)	•
Table B 5: Field-Edge Groundwater Monitoring Program - 2022 Imidacloprid Concentrations in Groundwate Samples	
Table B 6: Field-Edge Groundwater Monitoring Program - 2022 Alachlor ESA Concentrations in Groundwate Samples	
Table B 7: Field-Edge Groundwater Monitoring Program - 2022 Atrazine and Metabolite Concentrations in Groundwater Samples	42
Table B 8: Field-Edge Groundwater Monitoring Program - 2022 Nitrogen-Nitrate/Nitrite Concentrations in Groundwater Samples	45

Introduction

In 2022, the Wisconsin Department of Agriculture, Trade and Consumer Protection's (DATCP) Agrichemical Management (ACM) Bureau continued the Field-Edge Groundwater Monitoring Program to document the effect continual pesticide use is having on groundwater quality. Groundwater monitoring was performed by DATCP staff across a network of 57 monitoring wells and piezometers at 22 established locations. At each location, depth to groundwater is measured and groundwater samples are collected in the spring and fall to identify pesticide concentrations and evaluate seasonal variations. Collected samples are submitted to DATCP's Bureau of Laboratory Services (BLS) for chemical analysis. This report has been prepared to document 2022 program activities and includes a summary of groundwater level measurements and analytical data results. Recommendations for the 2023 Field-Edge Groundwater Monitoring Program plan based on historic trend results are also presented in this report.

A compilation of acronyms and definitions used throughout this document is provided in Appendix A - Acronyms and Definitions.

Purpose of Field-Edge Groundwater Monitoring

It is estimated that agriculture contributes \$104.8 billion annually to Wisconsin's economy (Wisconsin Department of Agriculture, Trade and Consumer Protection, 2023a). Growers in Wisconsin use several million pounds of pesticides and tons of fertilizers annually to grow a wide variety of crops. DATCP's Field-Edge Groundwater Monitoring Program is one form of monitoring the agency performs to meet its statutory obligation to protect groundwater quality. Wisconsin's groundwater law, Chapter 160, Wis. Stats., requires agencies to sample and monitor groundwater for substances related to facilities, activities, and practices under their jurisdiction; that have a reasonable probability of entering the groundwater resources of the state; and to determine whether preventive action limits (PAL) or enforcement standards (ES) have been exceeded at points of standard application. The statute further specifies that agencies should develop monitoring plans that include provisions for conducting four types of monitoring (Wis. Stats., ch. §160.05 and §160.27):

- 1. <u>Problem assessment monitoring</u>, to detect substances in the groundwater and to assess the significance of the concentrations of the detected substances;
- 2. Regulatory monitoring, to determine if preventive action limits or enforcement standards are attained or exceeded and to obtain information necessary for the implementation of responses with respect to specific sites;
- At-risk monitoring, to define and sample at-risk potable wells in areas where substances are detected in the groundwater or where preventive action limits or enforcement standards are attained or exceeded; and
- 4. Management practice monitoring, to assure practices are within compliance regulations.

The purpose of the Field-Edge Groundwater Monitoring Program (Program) is to evaluate agricultural practices and agrichemical uses on groundwater quality (problem assessment and regulatory monitoring). Depth to groundwater measurements and groundwater sample results are used to measure affects from agrichemical practices and use within and adjacent to agricultural fields. Affects to groundwater quality from agrichemical use is dependent on conditions at each location. Results are used to measure both localized and regional affects to aquifers over time at each field-edge sampling site. Historic and current goals of the Program include the following:

- Provide an early warning system to detect new agrichemical compounds in groundwater before widespread contamination can occur in underlying aquifers.
- Identify and measure pesticide concentrations that may have a potential to migrate to groundwater and exceed groundwater quality standards.
- Identify which environmental conditions (i.e. depth to groundwater, soil type, and geologic setting) are most vulnerable to conditions from routine agrichemical use.

- Gather and compile data regarding the occurrence and persistence of pesticide and metabolites in groundwater that may affect drinking water wells so that health-based groundwater quality standards can be established.
- Study the dissipation of restricted use pesticides (i.e. atrazine) in groundwater after prohibition areas are established or use is restricted, and the dissipation of pesticides no longer in use (i.e. aldicarb).
- Gather and compile long-term data on nitrate contamination in groundwater and its relationship to application practices.
- Evaluate affects to groundwater quality from various land uses and related pesticide use (i.e. tree nurseries, infiltration basins, golf courses).

Program Approach

DATCP and the property owner typically have access agreements allowing DATCP to install and access wells for sample collection. Typically, a monitoring well nest consists of a shallow well intersecting the water table and adjacent deeper wells (piezometers) installed with well screens placed at deeper depths within the underlying aquifer. These well nests are installed at the edge of an agricultural field to measure potential affects from routine agrichemical use. Well locations were carefully selected to avoid interference from other potential sources (i.e. septic systems or spills).

Over time, monitoring well nests have been installed within a variety of geologic settings, often in areas prone to groundwater contamination, such as areas with sandy soil, shallow depths to bedrock, or shallow groundwater. Nested well locations have two to five monitoring wells/piezometers. The shallowest well intersects the water table with piezometers installed at deeper intervals. Table B 1 in Appendix B provides construction specifications for each well in the Program's groundwater monitoring well network. Figure 1 (page 6) depicts the Program's monitoring locations relative to State of Wisconsin and county boundaries.

Program data collection and documentation are completed in accordance with established protocols and guidance (Wisconsin Department of Agriculture, Trade and Consumer Protection, 2021; Wisconsin Department of Natural Resources, 1996). Depth to water measurements and sample collection procedures are designed to collect reliable data consistently and in an unbiased fashion to ensure that localized conditions and regional impacts to aquifers over time can be evaluated. Field sampling observations and water level measurements are recorded in field notebooks. The compiled field information, along with laboratory results, are retained in databases maintained by DATCP.

Standard operating procedures for groundwater sampling include the following:

- After unlocking the protective casing, remove the well cap to allow the water level to equilibrate with atmospheric pressure before measuring and recording the water level at each well.
- Each well is then properly purged to remove a minimum of four well casing volumes. Purging is performed either by using dedicated bailers and rope, peristatic pumps (low flow) with dedicated tubing, or submersible electric pumps (i.e. whale or tornado pumps) with dedicated tubing. The volume of water removed is measured and recorded in the field logbook.
- Samples are then collected and placed in laboratory-provided containers using either sampling equipment dedicated to the well or with equipment that is decontaminated prior to use.
- Samples are placed into coolers and held on ice while in transport to the laboratory.
- Water purged from the wells and any rinse water used for cleaning is discarded on the ground surface.
- Field information is recorded in logbooks and maintained by ACM staff.

Groundwater samples are collected using the same equipment used for purging. Samples are collected in one-liter amber glass bottles provided by BLS. (Fifty-millimeter plastic containers were used for select glyphosate sampling.) Bottles and containers are then placed in a cooler and held on ice along with a properly completed sample collection record and hand delivered to BLS within 48 hours. During the 2022 Program, there were no issues with shipping or bottle breakage.

BLS performed all groundwater analytical testing using gas chromatography/mass spectroscopy (GC/MS/MS) and liquid chromatography/mass spectroscopy (LC/MS/MS) methods in accordance with ISO 17025 accreditation standards. All samples were tested for 106 pesticide analytes as well as nitrogen as nitrate

plus nitrite. Pesticide analytes are listed in Table B 2 of Appendix B along with corresponding reporting limits. A summary of the 2022 program analytical data results is listed in Table B 3 of Appendix B. Individual monitoring well or piezometer analytical reports are available upon request.

DATCP provides annual program findings documentation for each site to the respective property owner or grower. The summary letters provide the year's water level data and analytical results and includes a brief discussion of data trends over time. As part of the letter, growers are asked to reply with information regarding crops grown, pesticide use, and the amount of nitrogen applied to the fields near monitoring wells.

Program Assets and Infrastructure

The groundwater-monitoring network for the 2022 Field Edge Monitoring Program included 57 groundwater monitoring wells (31 water table observation wells and 42 piezometers) at 22 locations/stations around the state. Table B 1 in Appendix B lists well construction specifications associated with these Program assets. Figure 1 (page 6) depicts the Program's monitoring sites relative to State of Wisconsin and county boundaries. Construction logs and well development forms (and abandonment forms) associated with the groundwater monitoring wells, and piezometers are available upon request. The following is a summary of the Program's well installation history.

2022 Monitoring Well Sites

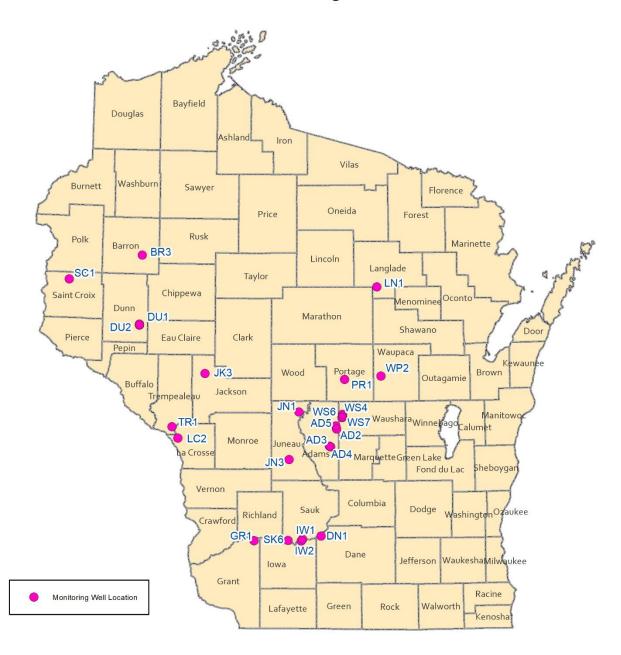


Figure 1: 2022 Monitoring Well Sites

1985-1989 ORIGINAL MONITORING WELLS AND PIEZOMETERS

The DATCP Field-Edge Groundwater Monitoring Program began in 1985. Initially, arrangements with growers and landowners at 50 sites were established in areas highly susceptible to groundwater contamination (i.e. coarse soil over sand, shallow depth to groundwater, and/or irrigated agricultural areas). Groundwater monitoring nests with three to four wells were installed at each site. Nested wells were constructed with well screens placed at various depths in the underlying aquifer. These wells were constructed adjacent to agricultural fields in the Central Sands region, Lower Wisconsin River Valley, and at other sandy soil areas throughout the state. The original Field-Edge Study was designed to collect groundwater samples from the uppermost shallow aquifer. Samples were tested for a limited number of agrichemicals and fertilizer to evaluate potential impacts to shallow groundwater from routine agricultural practices performed at nearby fields.

Data from the Program's initial years led to the establishment of statewide pesticide management plans for both atrazine and aldicarb. Over the years, many of the wells installed for the initial study have been abandoned due to changes in land ownership, urban encroachment, or damage. Of the original 50 sites, monitoring wells remain at 16 sites and were included in the 2022 monitoring program.

2005 MONITORING PROGRAM EXPANSION

In the fall of 2005, DATCP expanded its groundwater monitoring network with funding from a United States Environmental Protection Agency (US EPA) grant. New monitoring wells and piezometers were constructed at six sites based on local agricultural practices and susceptible to groundwater contamination (i.e. shallow groundwater with permeable subsurface soil units). Each of the six sites selected for program expansion were used for a prior DATCP groundwater monitoring study (Evaluation of Renewed Use of Atrazine in Atrazine Prohibition Areas), completed by DATCP in 2005. That study (also known as the Atrazine Reuse Study) was performed to gather information to evaluate the potential to repeal atrazine prohibition areas.

The groundwater flow direction was determined as part of the Atrazine Reuse Study. Using that information, two monitoring wells were installed hydraulically down gradient and adjacent to agricultural fields at the six new sites. All six of these sites still were included in the 2022 monitoring program.

2010 UNIVERSITY WISCONSIN-OSHKOSH WELLS

In the spring of 2010, DATCP became aware of a forthcoming study by a University of Wisconsin-Oshkosh graduate student and the Wisconsin Geological and Natural History Survey (WGNHS). The study included installation of shallow bedrock monitoring wells at the edge of agricultural fields in a karst geological setting. It used monitoring wells at sites in Brown, Calumet, Kewaunee, and Manitowoc counties. Bedrock fractures at each well were identified by the study team. Groundwater samples were collected by the study team and DATCP and tested annually as part of this Program between 2010 and 2014. The study was completed, and all monitoring wells were subsequently abandoned in 2014.

2011 MONITORING PROGRAM EXPANSION

In the summer and fall of 2011, DATCP expanded its groundwater monitoring network again with additional funding from a US EPA grant. Monitoring wells were constructed at two new stations in La Crosse and Trempealeau counties. These wells were installed along an elevated terrace adjacent to the Mississippi River. Since the groundwater flow direction was known at each site (both locations were part of the Atrazine Reuse Study), DATCP installed two groundwater monitoring wells at each site at the hydraulically down gradient edge of each agricultural field. Wells at both sites remain and were included in the 2022 monitoring program.

2017 MONITORING PROGRAM EXPANSION

In the summer and fall of 2017, DATCP further expanded the groundwater monitoring network with additional funding from a US EPA grant. Piezometers were constructed at three existing sites (two sites in Adams County [AD2 and AD5] and one in Portage County [PR1]) and at one new site, the Hancock Agricultural Research Station (HARS). At each of these sites, two piezometers were installed near the existing

groundwater monitoring nest with five-foot screens located at depths greater than 50 feet and 80 feet. The purpose was to evaluate groundwater quality relative to agrichemical uses at deeper aquifer intervals and compare data to shallower aquifer depths. A water table observations well (well screen placed to intersect the water table) was also constructed at HARS. The HARS site and nested wells at the Adams and Portage County sites remain and were included in the 2022 Program.

2021 MONITORING PROGRAM EXPANSION/ABANDONMENT

In the summer and fall of 2021, DATCP obtained additional funding from a US EPA grant again to expand the groundwater monitoring network. Eleven monitoring wells/piezometers were installed at six existing nested monitoring well sites. New wells were installed at sites in Adams County (AD2 and AD5), Dane County (DN1), Sauk County (SK6), Waushara County (WS7), and at two sites in Iowa County (IW1 and IW2). A monitoring well was also installed at the Dane County site to replace a well that was damaged beyond repair and subsequently abandoned in 2018. This shallow well was installed with a well screen intersecting the water table. Wells installed at the other five sites were constructed as piezometers with well screens placed 30 to 40 feet further in depth below the deepest existing piezometer screen already on-site in the well nest. These new piezometers were constructed with five-foot long well screens. The purpose was to evaluate groundwater quality relative to agrichemical uses at deeper aquifer intervals and compare data across vertical aquifer horizons. All new wells were included in the 2022 fall sampling event.

Additionally, five wells at two monitoring locations were removed from the Program in 2021 in response to a change in property ownership. New owners for two Adams County sites (AD3 and AD4) did not want to continue to participate in the Program and requested removal of the wells. Two shallow water table observation monitoring wells and three piezometers were abandoned in December 2021.

2022 Results

A total of 144 water level measurements and 112 groundwater samples were collected as a part of DATCP's 2022 Field-Edge Groundwater Monitoring Program. All groundwater samples were submitted to BLS for chemical analysis. Table B 3 in Appendix B summarizes 2022 Program analytical results and provides comparative risk values. The analytical data is compared to groundwater/drinking water standards to assess potential risk to human health and the environment. The risk values are sourced from the Wisc. Admin. Code ch. NR 140 for groundwater qualitative health standard limits and Wisconsin Department of Health Services (WDHS) drinking water health advisories.

Key findings for 2022 include the following.

- Information regarding field use of pesticides and fertilizer was requested from growers for 22 sites, but only four growers responded. This is less than usual.
- Water level measurements show an overall slight decline in water table elevations in 2022. In 2022, according to National Oceanic and Atmospheric Administration (NOAA), the state received on average 32.16 inches of precipitation compared to an average of 34.06 inches. This slight decline is likely related to the less than average of precipitation.
- Laboratory analysis include 106 pesticide analytes for the laboratory testing methods. During 2022, 32
 pesticide analytes were detected in excess of reporting limits in numerous groundwater samples, which
 is similar to previous years.
- Pesticides detected in 2022 samples in excess of laboratory reporting limits include 12 herbicides, 13 herbicide metabolites, five insecticides, and two fungicides.
- It appears that pesticides were detected at slightly greater concentrations during the fall sampling event compared to spring results.
- Overall, analytical data collected at nested monitoring wells indicates that pesticide and nitrogen
 concentrations increase with depth. Greater concentrations at depth indicate that pesticides migrate
 vertically and laterally within the underlying aquifers. This trend is consistent with prior years' findings.
- Metolachlor ethanesulfonic acid (ESA) was detected in excess of laboratory reporting limits in 99% of all samples collected and was the most frequently detected pesticide in 2022. Additionally, metolachlor ESA was detected at each groundwater monitoring site, which is the only compound detected at each monitoring well nest location. This is consistent with prior years' findings.

- Clothianidin was the second most frequently detected compound. It was detected in excess of laboratory reporting limits in 78% of the samples collected, and at 19 of the 22 groundwater monitoring sites. These observations are consistent with findings from prior years.
- Alachlor ESA was the third most frequently detected compound. It was detected in excess of laboratory reporting limits in 69% of the samples collected. However, the number of sites where it was detected (17 sites) has been decreasing when compared to previous year's findings.
- Atrazine or one of its breakdown products (de-ethyl atrazine, de-isopropyl atrazine, and diamino atrazine) was detected in excess of laboratory reporting limits in 47% of the samples collected. At each site with nested wells, results were evaluated by well depth. The greatest concentrations were detected in groundwater samples collected from the deepest piezometers.
- Neonicotinoid compounds clothianidin, imidacloprid, and thiamethoxam were detected in excess of laboratory reporting limits in 78%, 46%, and 42%, respectively, of the samples collected in 2022. The frequency of detection is similar to observations from the previous year.
- There was only one Wisc. Admin. Code, ch. NR 140 ES exceedances of an established groundwater quality health standards. (Note; only 31 of the 106 pesticides tested for have established groundwater quality health standard levels). Alachlor ESA exceeded the ES in a November groundwater sample collected from a well nest located in Juneau County. Additionally, there were Wisc. Admin. Code, ch. NR 140 PAL exceedances for atrazine, de-ethyl atrazine, de-isopropyl atrazine, di-amino atrazine, and atrazine total chlorinated residuals (TCR) at multiple locations and monitoring wells.
- The WDHS has also established drinking water quality advisories for several pesticides. Imidacloprid was detected at 14 out of 24 sites, with 12 of the 14 detections exceeding the WDHS drinking water health advisory level of 0.2 micrograms per liter (μ g/L) or parts per billion (ppb).

GROWER RESPONSES

DATCP obtained limited information for 2022 regarding crops grown, pesticide use, and the amount of nitrogen applied to the fields adjacent to monitoring wells. A request for this information was included with each 2021 summary letter sent to nearby property owners and growers. Responses to the information request is voluntary. DATCP received replies from only four of the 21 sites. No information was requested from HARS for site WS7. Table B 4 in Appendix B summarizes information provided by the growers along with available information from the previous six years. The following Table 1 is a summary of crops grown adjacent to the monitoring well nests and nitrogen use data for 2022 based on property owners and growers' responses.

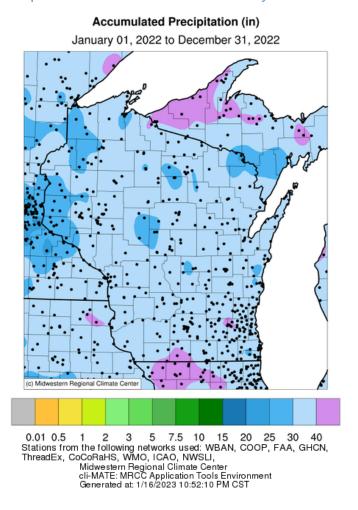
Table 1: Crops Grown and Nitrogen Applied on Fields Adjacent to 2022 Field Edge Stations

Crop	Number of Sites with Crops	Percent of Sites (reported)	Range of Nitrogen Applied (lbs / acre)
Corn	2	50%	220 - 415
Soy Beans	1	25%	0
Alfalfa	1	25%	0

Irrigation systems are present at 19 of the 24 monitoring sites. Of the 19 sites with irrigation systems, four sites provided water usage data for 2022. Growers reported that the range of irrigation water applied to the fields in 2022 ranged from 2 to 5.25 inches per acre.

Growers were also asked if they have state-approved Nutrient Management Plans for the adjacent fields. Of the four respondents, three indicated they have an approved plan.

A wide variety of pesticides used on fields adjacent to field edge monitoring wells was reported by the growers. Metolachlor was the most widely used active ingredient pesticide followed by glyphosate. A total of six different active ingredients (pesticide compounds) were reported to be applied in 2022 to the four


fields. Table B 4 in Appendix B identifies the complete list of pesticides used in 2022 as reported by the Growers.

WATER LEVEL MEASUREMENTS

Depth to water level is measured at each well prior to collection of groundwater samples for laboratory testing, and measurements are compared with past DATCP records to determine any historic trends. Water level measurements are typically taken in late spring and again in late fall. In 2022, this included April, May, early June, October, and November. Overall, measured water levels of sampled wells increased slightly during 2022 by an average of 0.89 inches. Additionally, well water levels were slightly higher on average than historic measurements made during the same months.

Wisconsin averages 34.06 inches of precipitation annually, according to the 1991-2020 historic climate normal (Midwestern Regional Climate Center, 2023). In 2022, the state was slightly drier than usual, receiving 32.16 inches of total precipitation (Midwestern Regional Climate Center, 2023). Figure 2 shows the total accumulated precipitation in Wisconsin over the course of 2022 (Wisconsin State Climatology Office, 2023). The map shows a relatively even distribution of total accumulated precipitation, with most of the state receiving between 30 and 40 inches. Several isolated spots received relatively less rain (between 25 and 30 inches), particularly in the northwestern region of the state.

Figure 2: Accumulated Precipitation from the Wisconsin Monthly Climate Watch Archive

The monthly total precipitation for each county with a Field-Edge Program monitoring well nest is shown in Figure 3 below. The figure was produced using data from the NOAA National Centers for Environmental Information (2023). Each color within a bar represents the amount of precipitation received during its corresponding month.

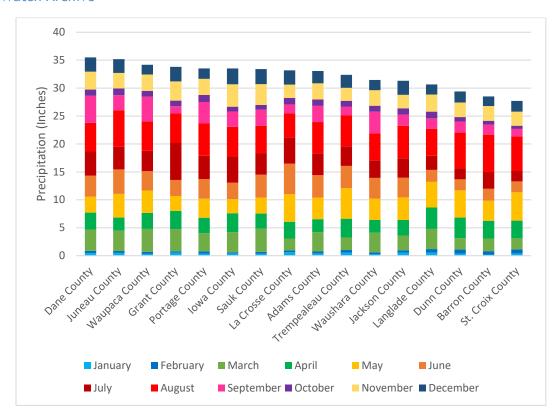


Figure 3: 2022 Monthly Precipitation Totals for Sampling-Site Counties from the NOAA Monthly Climate Watch Archive

Records of storm events provide specifics relating to precipitation patterns seen in sampled counties during 2022 (NOAA National Centers for Environmental Information, 2023). Between January and early April of 2022, heavy snowfall events occurred on eight occasions in 14 counties across northern and central latitudes of Wisconsin. Heavy rain events between March and July occurred on five days in six counties, primarily in the southern portion of the state. October through December saw heavy snow in 11 counties on seven separate days, again largely in the north. These snowfall events primarily occurred during the months of November and December.

Figure 4 depicts the monthly statewide precipitation departures from the historic 1991-2020 average (Wisconsin State Climatology Office, 2023). Positive precipitation departure values indicate more precipitation was received than average for that month, and negative means relatively less was received. In 2022, the months of January, February, May, June, July, September, and October had negative departures from the historic average. June and October had the biggest negative departures and were in excess of -1 inches. The values of negative precipitation departure ranged from nearly 0 to approximately -1.8 inches. March, April, August, November, and December all had positive precipitation departures, with March and August having departure values in excess of 1 inch. Positive precipitation departure values ranged from about 0.2 to 1.4 inches.

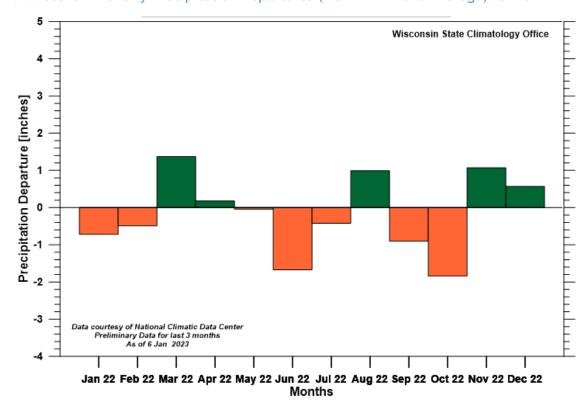


Figure 4: Wisconsin Monthly Precipitation Departures (from 1991-2020 Average) for 2022

Figure 5 shows the accumulated precipitation departure in 2022 across Wisconsin as provided by the Wisconsin State Climatology Office (2023). The colors on the map show the difference between the amounts of precipitation received in 2022 compared to the 1991-2020 historic average. Green and blue indicate more precipitation accumulated than average, and yellow, orange, and red indicate less. Most of Wisconsin generally received slightly less total precipitation than usual, particularly in the northwestern region of the state where some regions received three to six inches less than normal. Several areas in the eastern region received greater than average precipitation, up to three to six inches. Overall, the total precipitation accumulated during 2022 was classified as "near average" relative to historic records (NOAA National Centers for Environmental Information, 2023).

January 01, 2022 to December 31, 2022 (c) Midwestern Regional Climate Center -3 Stations from the following networks used: WBAN, COOP, FAA, GHCN, ThreadEx, CoCoRaHS, WMO, ICAO, NWSLI, Midwestern Regional Climate Center cli-MATE: MRCC Application Tools Environment Generated at: 1/16/2023 10:53:18 PM CST

Figure 5: Wisconsin Accumulated Precipitation (in): Departure from 1991-2020 Average

The following Figures (6 to 8) provide examples of measured water level fluctuations over time for three wells in the groundwater monitoring network. These three wells are at sites with infrastructure for irrigation. Graphs showing water level measurement trends for all other wells in the groundwater monitoring network are available upon request.

2022 water level data for Field-Edge Monitoring Program station AD2 indicate a lowering water level relative to the past several years (Figure 6). In 2022, water levels were statistically at the average for the duration of the monitoring program. According to NOAA, Adams County received only 30.09 inches of precipitation in 2022, which was notably less than the past nine years, compared to an average yearly precipitation of 34.24 inches. This precipitation decrease is likely the explanation for the decrease in 2022 water level observations compared to the previous years.

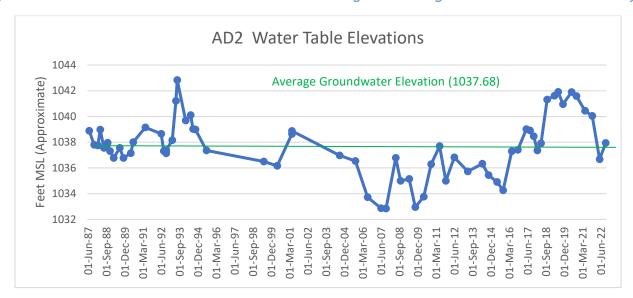


Figure 6: Historic Water Table Level Data for a Field-Edge Monitoring Station AD2 in Adams County

2022 water level data for Dunn County station DU1 also indicated a continued decrease compared to the previous year (Figure 7). In 2022, the water levels dropped slightly below its historic average. In Dunn County, NOAA has reported that precipitation levels over the past couple of years have been less than average. The receding water level recorded in the DU1 location wells likely reflect that decreasing precipitation.

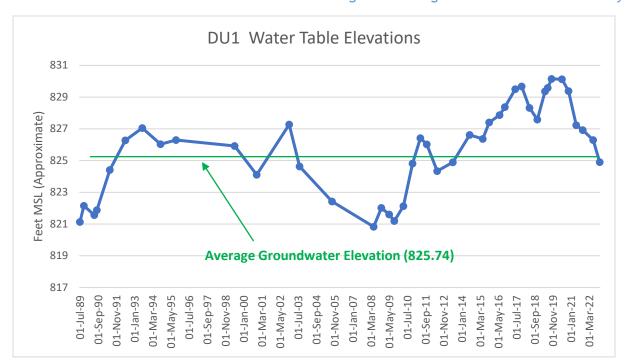


Figure 7: Historic Water Table Level Data for a Field-Edge Monitoring Station DU1 in Dunn County

2022 water level data for Iowa County station IW1 indicates stable water table conditions (compared to the previous two reported locations), consistent with historical measurements (Figure 8). Because this site is near the Wisconsin River, it is likely influenced by river water levels and the dams that control water flow. High water table conditions in the spring have been observed several times at this location over the course of

the monitoring program. The overall trend continues to indicate a stable trend over the past 20 years, which likely correlates to nearby river elevations. Precipitation amount have less of an effect.

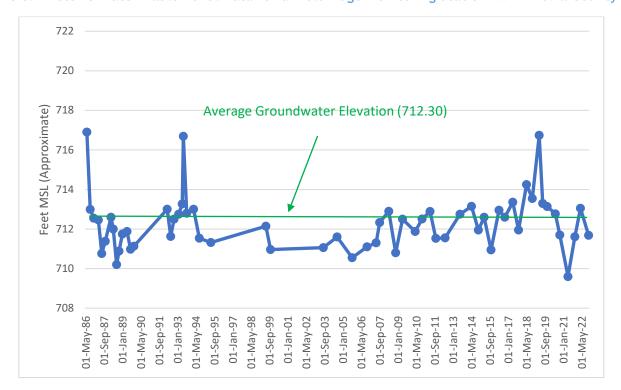


Figure 8: Historic Water Table Level Data for a Field-Edge Monitoring Station IW1 in Iowa County

DATCP is planning to complete an additional evaluation of groundwater elevation data for each individual monitoring site as part of a detailed study. Historical water level monitoring data will be evaluated for each site and results will be documented in a separate report prepared for each site (*Historical Field-Edge Site Data Analysis*). This evaluation will include a comparison of water level trends to precipitation records. These reports are planned to be completed over a three-year period with the first group available in 2024.

PESTICIDE DETECTION FREQUENCY

Thirty-two of the 106 analytes tested in DATCP's 2022 Field-Edge Groundwater Monitoring Program were detected in excess of laboratory reporting limits. The number of compounds detected in 2022 were fairly consistent from 2021 when 33 analytes were detected and is consistent with historical detection numbers.

Chlorothalonil was detected for the first time in the field edge monitoring program in 2022. Chlorothalonil is a fungicide used to treat vegetables, ornamental, and orchard diseases. It was detected in a groundwater sample collected in the fall from a well located in Waushara County.

There were some recurrent trends regarding analyte detections. There continues to be an absence of bromacil and dicamba in groundwater samples. These two compounds were consistently detected in the prior years, but not in the last two. Clopyralid and dimethenamid (and its metabolities) have continued to be detected in field-edge groundwater well samples, which is a recent trend.

At least two pesticide analytes were detected in every groundwater sample collected in the 2022 Field Edge Program. Pesticides detected in excess of laboratory reporting limits in 2022 samples include 12 herbicides, 13 herbicide metabolites, five insecticides, and two fungicides.

The most frequently detected pesticide compounds in 2022 are listed in Figure 9. This figure includes all pesticide analytes detected at a concentration greater than the laboratory reporting limit at a frequency greater than 20%.

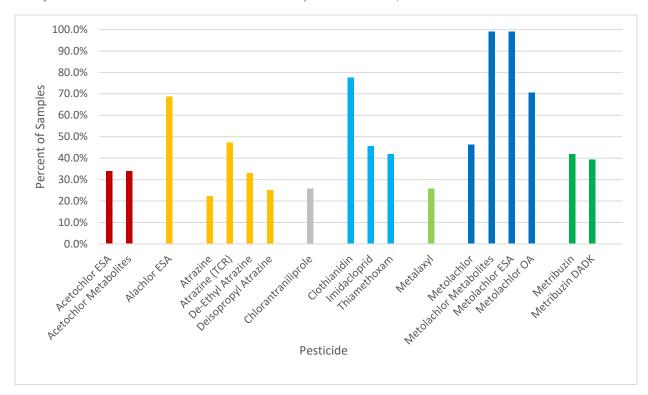


Figure 9: Percentage of 2022 Samples with Detectable Pesticide Concentrations (Includes all analytes detected in 20% or more of all samples collected)

Notes:

Atrazine TCR is total chlorinated residues of atrazine, which includes the sum of atrazine plus its metabolites de-ethyl atrazine, de-isopropyl atrazine, and di-amino atrazine.

Metolachlor ESA was once again the most frequently detected analyte in excess of laboratory reporting limits. It is a breakdown product of metolachlor, which is an active ingredient in corn herbicides. Metolachlor ESA was detected at every site and in 99.1% of all samples collected in 2022.

Clothianidin was the second most frequently detected compound in 2022. Clothianidin is an insecticide that controls sucking and some chewing insects, such as aphids, thrips, and beetles. It is commonly used for seed treatment on corn. It was detected in excess of laboratory reporting limits at 19 of the 22 sites and in 77.7% of the samples collected. This rate of detection is 2.7% greater than in 2021, continuing the trend of increasing clothianidin detections since testing for the analyte began 15 years prior. In the past, clothianidin detections were largely common at sites within the Central Sands Agricultural Region, but now it is detected throughout the monitoring network. Clothianidin is now commonly detected at most field edge monitoring well sites within agricultural-intense areas.

The third most frequently detected analyte for the 2022 program was metolachlor OA, which is followed closely by alachlor ESA. Both analytes were detected in a similar percentage of samples collected in 2022, but with metolachlor OA having a slightly higher rate of detection than alachlor ESA. Metolachlor OA was detected in excess of laboratory reporting limits at 17 of 22 sites and in 70.5% of collected samples. Similarly, alachlor ESA was detected at 17 of 22 sites and in 68.8% of samples. Both of these percentages are slightly greater than in 2022, but results may have been influenced by the decrease in the number of sampled sites between 2021 and 2022.

COMPARISON TO STANDARDS

The Wisconsin Department of Natural Resources (WDNR) sets groundwater quality standards in Wisc. Admin. Code ch. NR 140, which includes substances of public health concern based on recommendations from WDHS. These standards have two parts, the ES and the PAL. The ES is a level that, if exceeded, requires

intervention from the appropriate authority. In the case of pesticides in drinking water, DATCP is required to intervene if levels exceed the ES. The PAL is a percentage of the ES: 10% of the ES for carcinogenic, mutagenic, or teratogenic properties, and 20% of the ES for all other substances. The PAL is intended to act as a trigger for intervention by the appropriate authority before the pollutant becomes a risk to public health. These NR 140 standards have been established for 29 of the 106 analytes tested for in this program.

Additionally, WDHS has recently established drinking water health advisories for 16 pesticides parent materials and metabolites. Pesticide concentrations identified during DATCP's 2022 Program were compared to these WAC ch. NR 140 Groundwater Quality standards and WDHS drinking water health advisories. Table B 3 in Appendix B lists the existing standards alongside the range of concentrations for the pesticide compounds detected in 2022 groundwater samples.

In 2022, one groundwater sample contained an analyte that exceeded an established ES. An elevated concentration of alachlor ESA was detected in excess of the 20 micrograms per liter (μ g/L or parts per billion [ppb]) ES. This herbicide metabolite was detected at 23.2 μ g/L in a groundwater sample collected in the fall from well JN3-1 located in Juneau County. Additionally, imidacloprid was detected in 11 groundwater samples at concentrations greater than the WDHS drinking water health advisory of 0.2 μ g/L. These groundwater samples were collected from monitoring wells located in Adams, lowa, Sauk, and Waushara counties; six of the samples were collected from Adams County wells. All of the sites are located in the Lower Wisconsin River Valley or Central Sands Agricultural Region. Imidacloprid concentrations in these samples ranged from 0.207 to 1.52 μ g/L. No other analytes were found at concentrations greater than their respective ES or WDHS drinking water health advisory.

As depicted in Table B 3 of Appendix B, concentrations of metolachlor, de-ethyl atrazine, de-isopropyl atrazine, di-amino atrazine, and atrazine TCR (total chlorinated residues, which is the sum of atrazine and its three analyzed metabolites) were detected in excess of their respective Wisc. Admin. Code ch. NR 140 PAL standards.

Table B 3 of Appendix B also includes results for pesticides and their metabolites with no established ES, PAL, or WDHS drinking water advisories. Sixty-one of 106 pesticides compounds tested have no established groundwater quality standard or level. A review of 2022 data indicates that 32 different pesticides compounds were detected in excess of laboratory reporting limits, and 17 of these 32 compounds have no Wisc. Admin. Code ch. NR 140 established standard. However, nine of the 17 analytes with no Wisc. Admin. Code ch. NR 140 standards have a WDHS drinking water health advisories (chlorantraniliprole, clothianidin, flumetsulam, fomesafen, imidacloprid, metalaxyl, saflufenacil, sulfentrazone, and thiamethoxam).

Four of the 17 compounds with no established standards or WDHS advisories are metabolites for compounds with standards (alachlor, dimethenamid, or metribuzin). The remaining three detected compounds with no existing standard or WDHS advisory are chlorothalonill, clopyralid, and cyantraniliprole. Table 2 includes a detection summary of these remaining three compounds that are not metabolites and have no standard or advisory.

Table 2: Detected Parent Compounds that have No Wisc. Admin. Code ch. NR 140 Standard or WDHS Drinking Water Health Advisory Levels

Analyte	Sites with Detects (out of 22)	Number of Detects (out of 112)	% of Samples Detected	Concentration Range (in µg/L)
Chlorothalonil	1	1	0.9%	0.123
Clopyralid	2	3	2.7%	0.131-0.232
Cyantraniliprole	3	5	4.5%	0.0509-0.0943

2022 is the first year chlorothalonil has been detected in a field-edge monitoring well groundwater sample, and it is the only new compound detected in excess of laboratory reporting limits. Chlorothalonil is a fungicide used to treat vegetables, ornamental, and orchard diseases. It was detected in a groundwater sample collected in the fall from a well located in Waushara County.

It is important to note that comparisons of detected pesticides and their metabolite concentrations to established groundwater quality standards and drinking water advisories are based on exposure to a single compound. These comparisons do not fully evaluate the risk to human health when two or more compounds are present. Currently, there are no calculations to predict potential risk when multiple compounds are present. Since the current approach does not account for potential cumulative risk, potential toxicity may be underestimated when two or more compounds are present.

OTHER NOTABLE OBSERVATIONS

Neonicotinoids:

Interest in the neonicotinoid class of insecticides has increased greatly in recent years due to concerns over possible effects on pollinators. DATCP began testing for these compounds in 2008 with thiamethoxam. BLS now analyzes for six neonicotinoid compounds. Three of these compounds - clothianidin, imidacloprid, and thiamethoxam (CIT) - were detected in field-edge groundwater samples collected in 2022. The other three neonicotinoid compounds - acetamiprid, dinotefuran, and thiacloprid - were not detected in excess of laboratory reporting limits in any groundwater samples. The presence of the three CIT compounds in groundwater is expected as these compounds are known to readily leach when applied to crops grown in sandy soils and are used in many insecticide products. CIT compounds are labeled for use on most crops grown in the state including corn, soybeans, potatoes, many other vegetables, fruit crops, and most small grains.

Historic field-edge monitoring results indicate that CIT compounds are becoming more prevalent in groundwater over time. CIT compounds were observed at 19 of the 22 locations in 2022, which is more compared to prior years. However, concentrations seem to be stable or slightly decreasing at areas with known impacts. Thiamethoxam and imidacloprid have been detected in field-edge samples since testing for neonicotinoid compounds began, primarily at sites within the Central Sands Agricultural Region and Lower Wisconsin River Valley.

No Wis. Admin. Code ch. NR 140 ES or PAL groundwater quality standards have been established for the CIT compounds. However, WDHS has identified drinking water health advisories for each CIT compounds

Clothianidin and thiamethoxam were detected in 78% and 42%, respectively, of all 2022 samples collected from Field-Edge monitoring wells. This is consistent with historical detection percentages. Clothianidin concentrations ranged from 0.0115 to 1.59 μ g/L and thiamethoxam concentrations ranged from 0.0104 to 5.34 μ g/L. These detections are again consistent with historical detection ranges. Additionally, these detected concentrations do not exceed any of the respective WDHS drinking water health advisories for clothianidin or thiamethoxam.

Imidacloprid concentrations exceeding laboratory reporting limits were detected in 46% of the 2022 groundwater samples collected. It was detected in samples collected from 11 of 22 sites at concentrations ranging from 0.0118 to 1.52 μ g/L. These detection frequency and range are consistent with 2021 values but represents an overall increasing trend. Imidacloprid exceeded the WDHS drinking water health advisory of 0.2 μ g/L in 11 groundwater samples. These groundwater samples were collected from sites within the Central Sands Agricultural Region and Lower Wisconsin River Valley (Adams, Iowa, Sauk and Waushara counties). The imidacloprid data relative to each monitoring location is summarized in Table B 5 in Appendix B.

One observation regarding the 2022 data suggests that the imidacloprid and thiamethoxam are migrating vertically and horizontally within Central Sands Agricultural Region aquifers. Concentrations appear not to fluctuate seasonally, but greater concentrations have been detected in the groundwater collected from deeper screened wells at sites AD2-5, AD3-3, AD5-5, and WS7-3 compared to adjacent shallow wells. Additionally, imidacloprid and thiamethoxam have also been detected in nearby surface water samples indicating that groundwater is discharging to surface water year-round as base flow (see DATCP's 2022

Surface Water Sampling Report - Wisconsin Department of Agriculture, Trade and Consumer Protection, 2023b).

Results from DATCP's Field-Edge Groundwater Monitoring Program can also be compared to nearby historical Surface Water Sampling Program results. This data can then be used to further evaluate mobility, persistence, and discharge to surface water. DATCP intends to report findings of the evaluation along with an evaluation of historical results as part of DATCP's upcoming detailed comprehensive report for each field edge site.

Alachlor:

As noted previously, alachlor ESA was the third most frequently detected compound in 2022 samples. It was detected in excess of laboratory reporting limits in more than 69% of the samples collected and at 17 of the 22 field edge monitoring sites. The alachlor ESA data relative to each monitoring location is summarized in Table B 6 in Appendix B.

Alachlor ESA concentrations ranged from 0.0514 to 23.2 μ g/L in 2022 samples. The greatest concentration of alachlor ESA was 23.2 μ g/L in a groundwater sample collected from monitoring well JN3-1. This concentration exceeds the 20.0 μ g/L Wis. Admin. Code ch. NR 140 ES. In 2021, an alachlor ESA was detected at a concentration of 15.5 μ g/L in a groundwater sample collected from this same monitoring well.

As observed since 2017, groundwater samples collected from deeper wells AD5-5 and WS7-3 detected alachlor ESA at concentrations in excess of the Wis. Admin. Code ch. NR 140 PAL of 4.0 μ g/L. Between 2018 and 2022, no PAL exceedances were observed in samples collected from wells screened at shallower depths at these same sites. Although alachlor ESA remains at concentrations in excess of the PAL, it cannot be attributed to current use at nearby fields. Alachlor ESA is a breakdown product of alachlor. Alachlor production ceased in December 2014 and could not be sold in Wisconsin after August 2018. The parent alachlor was not detected in excess of laboratory reporting limits in any samples collected in 2022. These results were also observed with samples collected between 2018 and 2020.

Alachlor ESA was also widely detected in surface water and groundwater samples collected throughout the state. Because alachlor is no longer sold in Wisconsin and field use has ceased, it is expected that metabolite concentrations will decline over time. However, the ES exceedance detection is of concern. Additional data collection and evaluation of data from multiple years is needed to validate these observations.

Atrazine:

There are currently 101 atrazine Prohibition Areas (PAs) covering approximately 1.2 million acres within Wisconsin. It is illegal to apply any pesticide containing the active ingredient atrazine within an atrazine PA. In non-PAs, atrazine use is restricted but not prohibited. Since PAs have been in place for 10 years or more, it is anticipated that atrazine and its metabolite concentrations in groundwater would be limited, or not present at all. Of the 24 field-edge sites in the Program, only 11 are located within a PA. No grower self-reported atrazine use on adjacent fields within the PAs.

Atrazine or one of its breakdown products (de-ethyl atrazine, de-isopropyl atrazine, and di-amino atrazine) were detected in excess of laboratory reporting limits in 47% of the groundwater samples collected in 2022. No atrazine parent material, atrazine metabolites, or atrazine TCR concentrations were detected exceeding the 3.0 µg/L Wis. Admin. Code ch. NR 140 ES. However, atrazine TCR was observed in 24 groundwater samples (21% of collected samples) at a concentration greater than the 0.3 µg/L Wisc. Admin. Code ch. NR 140 PAL. Concentrations for atrazine TCR ranged from 0.0505 to 1.22 µg/L. Parent material atrazine, metabolite, and atrazine TCR data for each monitoring site is presented in Table B 7 in Appendix B.

The 2022 groundwater results indicated atrazine or one of its metabolites was detected in samples collected from 16 of the 22 sites. Groundwater samples with detections in excess of the Wis. Admin. Code ch. NR 140 PAL for atrazine TCR were collected from monitoring well networks located at nine of the 22 sites as follows:

- At two locations in Adams, Iowa, and Waushara counties; and
- at one location in St. Croix, Sauk, and Waupaca counties.

Of those nine sites, five are located in a PA: Iowa County (IW1, IW2), St. Croix County (SC1), Sauk County (SK6), and Waushara County (WS4). Of the five locations within a PA, parent material atrazine was found in

excess of detection limits at sites IW1, IW2, and SK6. All of these detections were identified in groundwater samples collected from the new piezometers constructed in 2022 at the deepest monitoring depths. This is consistent with previous year's results. Based on grower self-reporting, atrazine has not been used on the adjacent WS4 fields for over 20 years. These results indicate that the source for the parent material atrazine detections is not from adjacent fields. It is likely from a source beyond the immediate area, or it may be from historic use prior to establishment of the PA.

As observed during previous years, the greatest concentrations of atrazine TCR in 2022 samples, were typically detected in samples collected from deeper screened wells. Figure 10 depicts atrazine TCR concentrations relative to groundwater sample well depth. As indicated, elevated concentrations of atrazine TCR were detected in samples collected from monitoring wells screened between 50 and 60 feet below ground surface (bgs), and at deeper wells screened between 80 and 115 feet bgs. On average, shallow wells screened between 10 and 40 feet bgs detected atrazine TCR at lesser concentrations. Based on atrazine TCR concentrations observed across the aquifer depth, it is possible that atrazine is applied at nearby agricultural fields at rates that are not affecting shallow groundwater quality. The greater atrazine concentrations observed at depth likely indicate affects from historic use rather than an ongoing source from field use. A trend analysis is needed to show all historical groundwater data to determine if the atrazine TCR concentrations are decreasing within PAs as intended. DATCP intends to report these finding along with an evaluation of historical results as part of DATCP's detailed comprehensive report for each field-edge site.

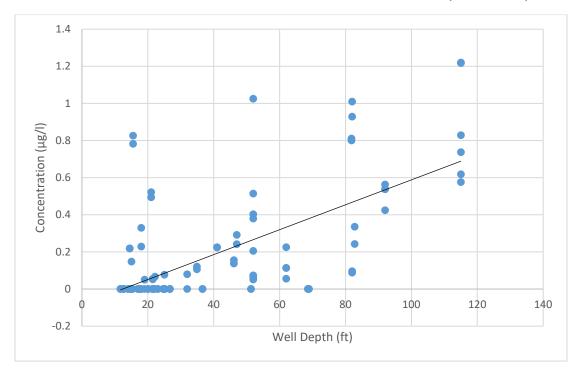


Figure 10: 2022 Atrazine TCR Concentrations relative to Groundwater Sample Well Depth

Notes: Line through data represents trend of concentrations relative to depth.

Nitrogen:

DATCP's Field-Edge Groundwater Monitoring Program primary focus is on pesticide affects to groundwater quality. In addition to pesticides, BLS includes nitrogen as nitrate plus nitrite analyses. Nitrogen impacts in groundwater and drinking water are the responsibility of WDNR. However, BLS includes nitrogen as nitrate plus nitrite analyses as part of this program, and that data is shared with WDNR.

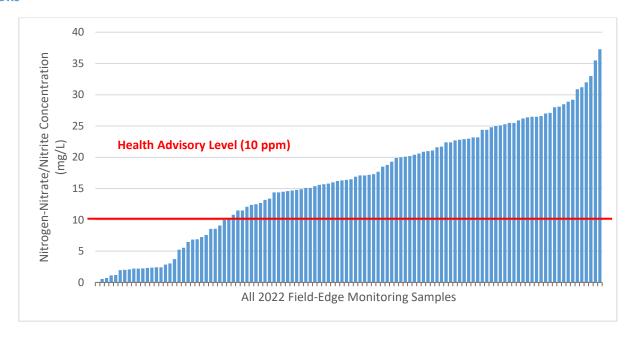

Nitrogen as nitrate plus nitrite was detected in excess of laboratory reporting limits in 111 of the 112 field edge groundwater samples collected in 2022. The average nitrogen concentration for all 2022 samples was 16.42 milligram per liter (mg/L or parts per million [ppm]), which is slightly greater than last year's (2021) average of concentration of 16.28 ppm. This is statistically in-line with the previous three years but continues the overall decreasing trend calculated over the past six years, which is summarized in Table 3.

Table 3: Average Nitrogen as Nitrate plus Nitrite Concentration over Previous Years

Year	Average Nitrogen-Nitrate/Nitrite Concentration (in parts per million)
2017	17.90
2018	17.72
2019	14.61
2020	16.89
2021	16.28
2022	16.42

The Wis. Admin. Code ch. NR 140 ES of 10 mg/L for nitrogen as nitrate plus nitrite was exceeded in 83 of the 112 groundwater samples collected in 2022. Of the 29 that did not exceed the ES, 23 groundwater samples exceeded the Wis. Admin. Code ch. NR 140 PAL of 2.0 mg/L. The greatest concentration of nitrogen (37.3 mg/L) was detected in the WS6-2 groundwater sample collected in the fall at a Waushara County station. All nitrogen as nitrate plus nitrite data relative to each monitoring location is summarized in Table B 8 of Appendix B. Figure 11 shows the 2022 nitrogen concentration distribution.

Figure 11: Nitrogen as Nitrate plus Nitrite Results Distribution in Groundwater Samples from All-Wells

Nitrogen as nitrate plus nitrite concentrations were also compared to wells screened at different depths. Figure 12 depicts nitrogen concentrations for all wells by depth. As indicated, nitrogen as nitrate plus nitrite was detected over a wide range of concentrations in groundwater samples collected from wells screened at shallow depths (between 10 and 40 feet bgs) compared to deeper wells. Groundwater samples collected from deeper wells typically detected nitrogen as nitrate plus nitrite at greater concentrations compared to the shallower screened well nest. However, it does appear concentrations decrease below a depth of 80 feet. As indicted, nitrogen as nitrate plus nitrite exceeded the 10 mg/L ES in samples collected from nearly

all the monitoring wells screened across the aquifer at a depth greater than 40 feet, and in more than half the wells less than 40 feet deep.

Concentration (mg/l) Well Depth (ft)

Figure 12: 2022 Nitrogen as Nitrate plus Nitrite Concentrations relative to Groundwater Sample Well Depth

Notes: Line through data represents trend of concentrations relative to depth.

Groundwater samples collected from deeper screened wells also show less seasonal variation in nitrogen concentrations compared to shallow wells. As depicted on Figure 13 below, nitrogen as nitrate plus nitrite concentrations fluctuated between -5 mg/L to + 5 mg/L in samples collected between spring and fall 2022 at the majority of monitoring well locations. On average, nitrogen concentrations increased by 0.32 mg/L between spring and fall. Overall, this suggests that nitrogen as nitrate plus nitrite concentrations for the majority of wells indicate little seasonal variation.

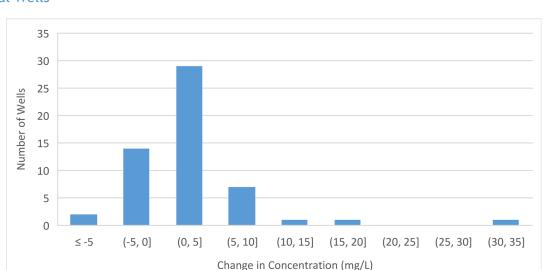


Figure 13: 2022 Nitrogen as Nitrate plus Nitrite Concentrations Variability from Spring to Fall at Individual Wells

Seasonal data based on nitrogen as nitrate plus nitrite concentration variances relative to groundwater depths was evaluated. It appears that there is a limited seasonal variability with the depth. This likely indicates nitrogen applications at the surface influence groundwater quality seasonally. As depicted on the Figure 14 below, groundwater samples collected from shallower wells have a somewhat greater range of variability in nitrogen concentrations to deeper wells. Nitrogen as nitrate plus nitrite concentrations in samples collected from deeper screened wells are expected to show less variability and serve as a baseline, with little seasonal influence occurring. This has not been observed throughout all the years of monitoring. Additional years of monitoring are necessary to validate or refute this observation.

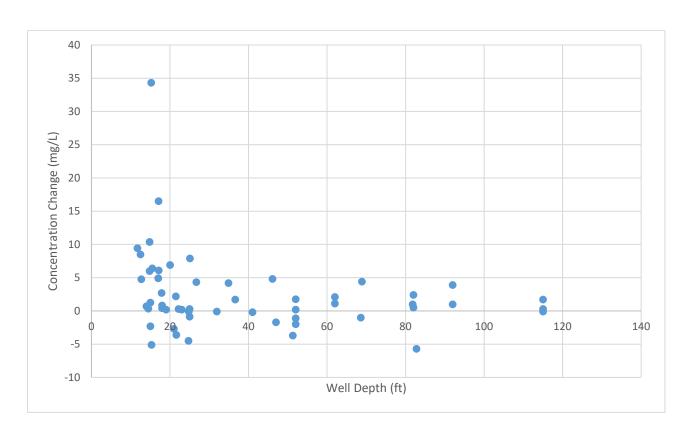


Figure 14: 2022 Nitrogen Concentrations Variability by Depth from Spring to Fall of Individual Wells

2023 Program Goals and Objectives

The Field-Edge Groundwater Monitoring Program mission is to monitor groundwater quality at strategic geographic locations within agricultural areas to characterize agrichemical migration to underlying aquifers, and act as an early warning signal for nearby drinking water wells. The program will continue in 2023. Program goals for 2023 include:

- Collaborate with BLS and develop a 2023 Field-Edge Groundwater Monitoring Program Sampling Plan.
- Conduct a groundwater sampling event in the spring (limited) and fall from the Program's groundwater monitoring network. BLS capacity will be limited in late spring to early fall due to DATCP's Drinking Water Survey sampling and analyses during this timeframe. The Field-Edge sampling will be limited during the spring but will be fully sampled in the fall timeframe.
- Document annual activities completed and summarize results for each site in a letter sent to each grower.
- Document the annual activities completed and summarize results in a 2023 Field-Edge Groundwater Monitoring Program Summary Report.

2023 data will be added to the existing database to ensure that long-term water level and groundwater monitoring data can be used to identify trends in groundwater quality over time. Long-term groundwater quality trends may be used to further evaluate the effectiveness of atrazine PAs. Long-term groundwater data will also be compared to surface water data from within the same watershed to identify potential relationships between surface water and groundwater quality. This evaluation may also be used to evaluate seasonal surface water flow variations and base flow groundwater discharge to surface water. DATCP intends to report finding along with an evaluation of historical results as part of DATCP's detailed comprehensive report for each field-edge site.

Acknowledgments

ACM's financial information includes the state fiscal year (FY) 2022 and 2023, from July 1, 2020 through June 30, 2022. Federal grants operate October 1 through September 30 (2022 and 2023). This report covers those portions of the federal grants that occurred during the state fiscal year. The primary sources of revenue for ACM are industry fees for licenses, permits, registrations, and tonnage under the feed, fertilizer, soil and plant additive, lime, and pesticide programs. In addition, a federal grant provides some funding to cover annual pesticide program expenses. ACM recognizes these important partnerships with industry and the federal government and works hard to maximize the use of this funding for the benefit of the industry, consumers, and the environment.

The raw data required to reproduce the above findings are available upon request. For any questions and clarifications, please do not hesitate to reach out to us at DATCPGW@wisconsin.gov or at (608) 224-4502.

References

- Midwestern Regional Climate Center. (2023). *State and Climate Divisional Data*. Retrieved from cli-MATE: https://mrcc.purdue.edu/CLIMATE/welcome.jsp
- National Centers for Environmental Information (NCEI). (2021). *Annual 2021 National Climate Report*. Retrieved from https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202113
- NOAA National Centers for Environmental Information. (2023). Retrieved from Storm Events Database: https://www.ncdc.noaa.gov/stormevents/
- NOAA National Centers for Environmental Information. (2023). *Annual 2022 National Climate Report*. Retrieved from https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202213
- NOOA National Oceanic and Atmospheric Administration. (2023a). *National Centers for Environmental Information*. Retrieved from Storm Events Database: https://www.ncdc.noaa.gov/stormevents/
- NOOA National Oceanic and Atmospheric Administration. (2023b). *National Integrated Drought Information System*. Retrieved from https://www.drought.gov/
- United States Department of Agriculture National Agricultural Statistics Service. (2023). *Surveys* . Retrieved from Agricultural Chemical Use Program.
- Wisconsin Department of Agriculture, Trade and Consumer Protection. (2023a). *Wisconsin Agricultural Statistics*. Retrieved from https://datcp.wi.gov/Pages/Publications/WIAgStatistics.aspx
- Wisconsin Department of Agriculture, Trade and Consumer Protection. (2023b). 2021 Surface Water Pesticide Monitoring Program Annual Report.

Wisconsin Department of Agriculture, Trade and Consumer Protection. (2021). Sample Collection - Private Well.

Wisconsin Department of Natural Resources. (1996). Groundwater Sampling Field Manual.

Wisconsin State Climatology Office. (2023). Retrieved from Wisconsin Climate Watch Archive: https://www.aos.wisc.edu/~sco/clim-watch/archives.html#monthly2021

Wisconsin State Climatology Office. (2023). *Wisconsin Climate Watch Archive*. Retrieved from Wisconsin State Climatology Office: https://www.aos.wisc.edu/~sco/clim-watch/archives.html

Appendix A

The acronyms and terminology included on this list are generic definitions intended to help understand the Field-Edge Monitoring Program. Some of these terms are more specifically defined in various regulations.

ACRONYMS

	Micrograms per liter (a liquid equivalent of ppb)
ACM	DATCP Bureau of Agrichemical Management
AMPA	Aminomethylphosphonic acid
Bgs	Below ground surface
BLS	DATCP Bureau of Laboratory Services
CAS	Chemical Abstract Service
CIT	clothianidin, imidacloprid, and thiamethoxam
DADK	Desaminodiketo
DATCP	Wisconsin Department of Agriculture, Trade and Consumer Protection
ES	Enforcement Standard
ESA	Ethane Sulfonic Acid
GC	Gas Chromatography
GCC	Wisconsin Groundwater Coordinating Council
HARS	Hancock Agricultural Research Station
ISO	International Organization for Standardization
LC	Liquid Chromatography
mg/L	Milligrams per liter (a liquid equivalent of ppm)
MS	Mass Spectroscopy
msl	Mean sea level
N	Nitrogen
ND	No Detect - concentrations are less than laboratory reporting limits
NOAA	National Oceanic and Atmospheric Administration
OA	Oxanilic Acid
PA	Prohibition Area
PAL	Preventive Action Limit
PPB	Parts per billion
PPM	Parts per million
TCR	Total chlorinated resides of atrazine
TPVC	Top of well casing
TSAMP	Targeted Sampling Program

United States Department of Agriculture
United States - Environmental Protection Agency
Wisconsin Department of Health Services
Wisconsin Department of Natural Resources
Wisconsin Geological and Natural History Survey
Wisconsin Administrative Code
Wisconsin Unique Well Number

DEFINITIONS

Analyte - A chemical substance that has a defined Chemical Abstract Service (CAS) number

Atrazine Prohibition Area - An area where atrazine use is currently prohibited under Administrative Code ATCP 30

Chronic Exposure value - The highest concentration of a chemical to which the organism can be exposed without causing chronic toxicity to the organism in question

Compound - A substance formed by the chemical union of two or more ingredients

Detection - When an analyte has a concentration that can be quantified (i.e., a concentration greater than the Laboratory Reporting Limit)

Herbicide - A pesticide used to kill or inhibit the growth of plants, weeds, or grasses

Insecticide - A pesticide used to kill or inhibit the growth of insects

Metabolite or Residual compound or Breakdown product - A chemical substance left behind by a parent compound that has degraded through natural chemical breakdown and/or been metabolized by bacteria

Neonicotinoids- Insecticides that target the neurological systems of insects. The neonicotinoid family includes acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, nithiazine, thiacloprid, and thiamethoxam

NR140 - Wisconsin Administrative Code which establishes groundwater quality standards and required responses when the standards are exceeded

Pesticide - Substance used to kill, repel, or control certain forms of plant or animal life that are considered to be pests. The pesticide category includes herbicides, insecticides, rodenticides, fungicides, and bactericides

Piezometer - Monitoring well with screened section in saturated conditions within the aquifer beneath the groundwater surface

Reporting limit - The minimum analyte concentration that can be reliably quantified and reported by the laboratory

Total chlorinated residues (TCR) of atrazine - Sum of atrazine and atrazine metabolites (de-ethyl atrazine, de-isopropyl atrazine, and diamino atrazine)

APPENDIX B

Table B 1: Field-Edge Groundwater Monitoring Program - Monitoring Wells and Piezometers Construction Specifications

County	Site (Grower)	Well Identification	wuwn	Year Constructed	Prohibition Area	Irrigation Available	Ground Elevation (MSL)	TPVC Elevation (MSL)	Well Depth (ft)	Bottom of Well (MSL)	Screen Length (ft)	Top of Screen (ft)	Sampling Method		
		AD2-1	BH954	1987				1,053.96	17.87	1,036.09	5	1,053.96			
		AD2-2	BH953	1987				1,054.14	22.83	1,031.31	5	1,054.14	Peristolic Pump		
	AD2	AD2-3	BH952	1987	N-	V	1,051.7	1,054.17	27.62	1,026.55	5	1,054.17			
	10.32	AD2-4	VR844	2017	No	Yes	1,051.7	1,054.44	54.70	999.74	5	1,054.44			
		AD2-5	VR845	2017				1,054.35	85.70	968.65	5	1,054.35	Whale Pump and Dedicated Tubing		
		AD2-6	PT421	2021				-	116.40	-	5	1	Tubing		
		AD3-1*	BH999	1987				1,010.48	14.93	995,55	5	1,010,48			
	AD3	AD3-2 ⁴	BI000	1987	No	Yes	1,008.0	1,010.34	19:64	990.70	5	1,010.34			
		AD3-3 ⁴	81001	1987				1,010.44	24.69	985.75	5	1,010.44			
Adams		AD4-1 ¹	8H996	1987				1,017.38	24.71	992.67	5	1,017.38			
	AD4	AD4-2 ⁴	8H997	1987				1,017.26	29,69	987.57	5	1,017.26			
		AD4-3 ⁴	84998	1987	No	Yes	1,013.9	1,016,56	34,57	981.99	5	1,016.56			
		AD5-1	CL461	1988				1,053.18	15.24	1,037.94	5	1,053.18			
		AD5-2	CL455	1988	1			1,053.31	19.91	1,033.40	5	1,053.31	Peristolic Pump		
	AD5	AD5-3	CL456	1988				1,053.27	25.23	1,028.04	5	1,053.27	•		
	Abs	AD5-4	VR846	2017	No	Yes	1,051.1	1,053.63	53.20	1,000.43	5	1,053.63			
		AD5-5	VR847	2017				1,053.68	85.70	967.98	5	1,053.68	Whale Pump and Dedicated		
		AD5-6	PT422	2021					117.50		5		Tubing		
		BR3-1	BR279	1987		<u> </u>		1,055.79	15.03	1,040.76	5	1,055.79			
Barron	BR3	BR3-2	BR280	1987	No	Yes	1,052.7	1,055.37	20.02	1,035.35	5	1,055.37	Peristolic Pump		
		BR3-3	BR281	1987	110	les	2,002	1,054.93	25.02	1,029.91	5	1,054.93	T office to the transp		
			BR250	1985				744.38	12.10	732,28	<u> </u>	744.38			
	DN1	DN1-1	PT428	2021				745.32	14.90	730.42	5	745.32	Dedicated Bailer		
Dane	DIVI	DN1-2		1985	93-57-04	Yes	743.7	745.87	17.40	728.47	5	745.87	Dedicated baller		
		DN1-2	BR251		93-57-04	163		746.08	22.20	723.88	5	746.08	Peristolic Pump		
		DU1-1	BR252	1985		<u> </u>		853.92	34.90	819.02	5	853.92			
	DU1	DU1-2	AO384	1989	No	Yes	852.5	854.87	40.80	814.07		854.87	Dedicated Bailer		
		DU1-3	AO385	1989	140	165	NO TES	les	052.5	855.12	46.10	809.02	5	855.12	Dedicated baller
Dunn			AO386	1989						26.70		(7)(1)	858.05		
	DU2	DU2-1	AO387	1989	N-	V	856.2	858.05		831.35	5		Peristolic Pump		
		DU2-2	AO388	1989	No	Yes	030.2	858.17	31.30	826.87	5	858.17	Peristolic Puritp		
		DU2-3	AO389	1989				858.48	36.60	821.88	5	858.48			
Crant	GR1	GR1-1	BR255	1985	02.57.04		603.0	686.32	12.50	673.82	5	686.32	Davistalia Dumun		
Grant	Name of the last	GR1-2	BR256	1985	93-57-04	No	683.8	686.48	17.30	669.18	5	686.48	Peristolic Pump		
		GR1-3	BR257	1985				686.12	21.60	664.52	5	686.12			
		RW1-1 ³	BH955	1986					14.90		5				
		tW1-2	a26H8	1986					19.90		5				
	1147	IW1-4	BH957	1986				722.05	24,90	707.75	5	722.05			
	IW1		BR259	1986				723.85	17.10	706.75		723.85	Peristolic Pump		
		IW1-5	BR260	1986	02.57.04	V	722.5	723.84	21.30	702.54	5	723.84	renstone rump		
lows		IW1-6	BR261	1986	93-57-04	Yes	722.3	723.67	26.70	696.97	5	723.67			
lowa		IW1-7	BH967	1987				723.67	61.99	661.68	5	723.67	Whale Pump and Dedicated Tubing		
		IW1-8	PT425	2021				723.06	93.97	629.09	5	723.67	Tubling		
		IW2-1	BR036	1986				726.76	14.80	711.96	5	726.76	Peristolic Pump		
	IW2	IW2-2	BR037	1986	03.57.04	V	722.0	726.50	19.70	706.80	5	726.50	renstolic rump		
		IW2-3	BRO38	1986	93-57-04	Yes	723.8	726.40	24.70	701.70	5	726.40			
		IW2-4	PT426	2021				725.89	65.92	659.97	5	725.89	Whale Pump and Dedicated		
		IW2-5	PT427	2021			4.005.0	726.24	94.81	631.43	5	726.24	Tubing		
Jackson	JK3	JK3-1	JH991	2005	94-27-04	No	1,025.3	1,028.06	27.33	1,000.73	10	1,028.06	Peristolic Pump		
		JK3-2	JH981	2005			1,023.7	1,026.44	25.77	1,000.67	10	1,026.44			
	JN1	JN1-1	BR046	1985		V -	020.7	941.26	11.70	929.56	5	941.26	Desisted' D		
lum		JN1-2	BR047	1985	No	Yes	939.7	941.21	16.70	924.51	5	941.21	Peristolic Pump		
Juneau		JN1-3	BRO48	1985		1		941.34	21.50	919.84	5	941.34			
	JN3	JN3-1	JH937	2005	94-29-01	No	901.5	903.84	20.42	883.42	10	903.84	Peristolic Pump		
		JN3-2	JH936	2005			902.0	905.20	18.14	887.06	10	905.20			
La Crosse	LC2	LC2-1	VZ391	2011	No	Yes	684.1	686.40	49.22	637.18	10	686.40	Dedicated Bailer		
	100	LC2-2	VZ392	2011			687.8	681.91	43.98	637.93	10	681.91			

1	1314	LN1-1	BH964	1986			1	1,473.85	14.80	1,459.05	5	1,473.85		
Langlade	LN1	LN1-2	BH965	1986	No	No	1,471.6	1,474.44	19.70	1,454.74	5	1,474.44	Peristolic Pump	
		LN1-3	BH966	1986				1,473.74	24.80	1,448.94	5	1,473.74		
		PR1-1	BR207	1986				1,082.01	12.70	1,069.31	5	1,082.01		
	PR1	PR1-2	BR208	1988				1,081.94	17.60	1,064.34	5	1,081.94	Peristolic Pump	
Portage	PRI-3 BR209 PRI-4 VR848	1988	No	No Yes	1,079.7	1,081.72	22.50	1,059.22	5	1,081.72				
		VR848	2017				1,082.83	55.30	1,027.53	5	1,082.83	Whale Pump and Dedicated		
		PR1-5	VR849	2017				1,082.77	84.70	998.07	5	1,082.77	Tubing	
		SC1-1	JH938	2005			1,006.8	1,010.14	24.87	985.27	10	1,010.14		
St. Croix	SC1	SC1-1 (D)	VZ390	2011	94-56-02	Yes	1,000.0	1,009.16	30.10	979.06	10	1,009.16	Peristolic Pump	
JC. CIOIX		SC1-2	JH939	2005	34 30 02	ics	1,003.9	1,006.63	21.87	984.76	10	1,006.63		
		SC1-2(D)	VZ393	2011			1,003.3	1,006.40	30.17	976.23	10	1,006.40		
		SK6-1	BB246	1988				713.68	14.92	698.76	5	713.68		
	SK6	SK6-2	BB247	1988	93-57-04	93-57-04		711.8	713.37	20.04	693.33	5	713.37	Peristolic Pump
Sauk	Silo	SK6-3	BB248	1988			Yes	Yes		713.55	25.10	688.45	5	713.55
		SK6-4	PT424	2021			710.2	711.56	53.42	658.14	5	711.56	Whale Pump and Dedicated Tubing	
Trempealeau	TR1	TR1-1	PX201	2005	No	Yes	730.4	733.29	75.55	657.74	10	733.29	Dedicated Bailer	
Trempealeau		TR1-2	PX202	2005	No	res	731.1	733.83	75.20	658.63	10	733.83	Dedicated Ballel	
Waupaca	WP2	WP2-1	JH985	2005	94-69-01	No	908.4	911.03	20.45	890.58	10	911.03	Peristolic Pump	
vvuapacu		WP2-2	JH984	2005	34-03-01	NO	905.7	908.82	20.43	888.39	10	908.82	Teristolie rump	
		WS4-1	BB258	1988				1,084.97	17.13	1,067.84	5	1,084.97		
	WS4	WS4-2	BB259	1988	93-70-01	Yes	1,082.4	1,085.03	22.02	1,063.01	5	1,085.03	Peristolic Pump	
		WS4-3	BB260	1988	33-70-01	les	1,002.4	1,084.98	27.16	1,057.82	5	1,084.98		
		WS4-4	BB261	1988				1,084.88	31.94	1,052.94	5	1,084.88		
Waushara	WS6	WS6-1	JH989	2005	93-70-01	Yes	1,076.8	1,080.90	18.27	1,062.63	10	1,080.90	Peristolic Pump	
Wadshara		WS6-2	JH990	2005	33-70-01	les	1,070.0	1,079.07	17.02	1,062.05	10	1,079.07	T cristolic Turilp	
		WS7-1	VR841	2017				1,078.65	18.40	1,060.25	10	1,078.65	Peristolic Pump	
	WS7	WS7-2	VR842	2017	No	Yes	1,075.7	1,078.79	54.70	1,024.09	5	1,078.79	Whale Pump and Dedicated	
		WS7-3	VR843	2017	No	165	1,373.7	1,078.78	84.80	993.98	5	1,078.78	Tubing	
		WS7-4	PT423	2021					104.10	-	5			

NI-4	
Notes	

Monitoring well was abandoned on May 30, 2019 because integrity of protective casing was compromised during spring 2019 sampling.

Monitoring well was abandoned on December 13, 2018 because integrity of protective casing was compromised by a vehicle prior to fall 2018 sampling. Monitoring wells were abandoned June 11, 1993 because they were no longer needed for the monitoring program.

Monitoring wells were abandoned December 1, 2021 because ownership no longer wished to participate in the monitoring program.

WUWN Wisconsin Unique Well Number

Mean sea level MSL TPVC

Top of well casing (PVC) Monitoring Well/Piezometer abandoned.

Monitoring Well/Piezometer abandonieu.

Monitoring Well/Piezometer construction was financed by a 2021 U.S. EPA grant.

Monitoring Well/Piezometer construction was financed by a 2017 U.S. EPA grant.

Monitoring Well/Piezometer construction was financed by a 2011 U.S. EPA grant.

Monitoring Well/Piezometer construction was financed by a 2005 U.S. EPA grant.

Monitoring Wells/Piezometers assocaited with initial program activities and financed by State.

27

Table B 2: 2022 Sample Analytes, Applicable Wis. Admin. Code ch. NR 140 PALs & ESs, Drinking Water Health Advisories, and Reporting Limits

	Prentive	Enforcement		Dti
Analyte Description	Action Limit	Standard	Advisory*	Reporting Limit (µg/I)
2,4-D (dichlorophenoxyacetic acid)	7	70		0.050
2,4-DB				1.00
2,4-DP				0.050
2,4,5-T				0.050
2,4,5-TP (trichlorophenoxy-prop. acid)	5	50		0.050
ACETAMIPRID				0.010
ACETOCHLOR	0.7	7		0.050
ACETOCHLOR ESA	46 ¹	230 ¹		0.050
ACETOCHLOR OA	46 ¹	230 ¹		0.30
ACIFLUORFEN				0.050
ALACHLOR	0.2	2		0.050
ALACHLOR ESA	4	20		0.050
ALACHLOR OA	,	20		0.25
ALDICARB SULFONE				0.050
ALDICARB SULFOXIDE				0.030
AMINOPYRALID	0.2	2		0.150
ATRAZINE	0.3	3		0.050
DE-ETHYL ATRAZINE	0.3	3		0.050
DEISOPROPYL ATRAZINE	0.3	3		0.050
DIAMINO ATRAZINE	0.3	3		0.150
ATRAZINE TCR (calculated)	0.3 3	3 ³		0.050
AZOXYSTROBIN				0.050
BENFLURALIN				0.050
BENTAZON	60	300		0.050
BICYCLOPYRONE				0.050
BROMACIL				0.050
BIFENTHRIN				0.005
CARBARYL	4	40		0.050
CARBOFURAN	8	40		0.050
CHLORAMBEN	30	150		0.32
CHLORANTRANILIPROLE			16,000	0.050
CHLOROTHALONIL				0.10
CHLORPYRIFOS	0.4	2		0.050
CHLORPYRIFOS OXYGEN ANALOG				0.050
CLOMAZONE				0.050
CLOPYRALID				0.050
CLOTHIANIDIN			1,000	0.010
CYANTRANILIPROLE			,	0.050
CYCLANILIPROLE				0.20
CYFLUTHRIN				0.050
CYPERMETHRIN				0.10
CYPROSULFAMIDE DACTHAL	14	70		0.050
	14	/U	²	
DACTHAL DI-ACID			70 ²	0.050
DACTHAL MONO-ACID			70 ²	0.050
DIAZINON				0.050
DIAZINON OXYGEN ANALOG	-			0.050
DICAMBA	60	300		0.200
DICHLOBENIL				0.050
DIMETHENAMID	5	50		0.050
DIMETHENAMID ESA				0.050
DIMETHENAMID OA				0.050
DIMETHOATE	0.4	2		0.050
DINOTEFURAN				0.010
DIURON				0.050

so s	Standard 250	10,000 25 10,000 10,000 400 0.2 3 ⁴ 3 ⁴	Limit
		25 10,000 10,000 400 0.2 3 ⁴ 3 ⁴	0.050 0.050
		25 10,000 10,000 400 0.2 3 ⁴ 3 ⁴	0.050 0.050
		25 10,000 10,000 400 0.2 3 ⁴ 3 ⁴	0.050 0.050
		25 10,000 10,000 400 0.2 3 ⁴ 3 ⁴	0.050 0.050 0.050 0.50 0.50 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
		10,000 10,000 400 0.2 3 ⁴ 3 ⁴	0.050 0.050 0.50 0.50 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
		10,000 10,000 400 0.2 3 ⁴ 3 ⁴	0.050 0.50 0.50 0.50 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
		10,000 10,000 400 0.2 3 ⁴ 3 ⁴	0.50 0.50 0.05
		10,000 400 0.2 3 ⁴ 3 ⁴	0.50 0.50 0.05
		400 0.2 3 ⁴ 3 ⁴	0.50 0.050 0.050 0.050 0.050 0.010 0.050 0.050 0.050 0.050 0.050 0.050
		400 0.2 3 ⁴ 3 ⁴	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
		0.2 3 ⁴ 3 ⁴	0.050 0.050 0.050 0.010 0.050 0.050 0.050 0.050 0.050 0.050
		0.2 3 ⁴ 3 ⁴	0.050 0.050 0.010 0.050 0.050 0.020 0.050 0.050 0.050
		34 34	0.050 0.010 0.050 0.050 0.020 0.050 0.050 0.050
		34 34	0.010 0.050 0.050 0.020 0.050 0.050 0.050
		34 34	0.010 0.050 0.050 0.020 0.050 0.050 0.050
		34 34	0.050 0.050 0.020 0.050 0.050 0.050
		34	0.050 0.020 0.050 0.050 0.050 0.10
			0.050 0.050 0.050 0.10
			0.050 0.050 0.050 0.10
			0.050 0.10
			0.050 0.10
			0.10
			0.050
			0.10
		800	0.050
		500	0.050
10	100		0.050
260 ⁵	1300 ⁵		0.050
260 ⁵	1300 ⁵		0.030
14	70		0.050
14	70		0.10
			0.10
			0.050
			0.050
			0.050
			0.050
			0.050
100	500		0.030
20	100		0.050
			0.050
			0.050
		467	0.050
		460	0.050
0.4	4		0.050
		1,000	0.050
			0.050
			0.050
			0.10
			0.010
		120	0.010
		800	0.050
			0.050
	7.5		0.050
		20 100	20 100 460 0.4 4 1,000 120 800

All concentrations are presented as micrograms per liter ($\mu g/L$) or parts per billion, exceet for Nitrogen.

mg/L - milligrams per liter or parts per million.

DA - desamino

DADK - desaminodiketo DKN - diketonitrile

ESA - ethane sulfonic acid.

OA - oxanilic acid, can also be identified as OXA.

^{*} Wisconsin Department of Health Services Drinking Water Health Advisory (June 2019, November 2020, Revised February 2022).

¹ Combined sum of acetochlor metabolites ESA and OA.

Combined sum of acetochlor metabolites ESA and OA.
 Combined sum of metabolites (di- and mono-acid) and parent material dacthal.

³ Total Chlorinated Residue for Atrazine. Combined sum of metabolites (de-ethyl, de-isopropyl and di-amino) and parent material atrazine.

 $^{^{4}}$ Combined sum of metabolite (DKN) and parent material isoxaflutole.

 $^{^{\}rm 5}\,$ Combined sum of metolachlor metabolites ESA and OA.

Table B 3: Field-Edge Groundwater Monitoring Program - 2022 Groundwater Analytical Results

2022 Ground Water Project Results (all concentrations in ug/L)								Wisconsin Admin. Code Chapter NR 140	
Pesticide Name	Pesticide Class	Reporting Limit	Number of Sites with Detects ¹	Number of Total Detects ²	Percent of Samples with Detects	Concentration Range	Drinking Water Health Advisory ³	Enforcement Standard	Preventive Action Limit
2,4-D (dichlorophenoxyacetic acid)	Herbicide	0.05						70	7
2,4-DB	Herbicide	1.00				_			
2,4-DP	Herbicide	0.05				-			
2,4,5-T	Herbicide	0.05				-			
2,4,5-TP (trichlorophenoxy-propionic acid)	Herbicide	0.05						50	5
Acetamiprid	Insecticide	0.010				-			
Acetochlor	Herbicide	0.05				-		7	0.7
Acetochlor ESA	Metabolite	0.05	11	38	33.9%	0.0507 - 2.23		230	46
Acetochlor OA	Metabolite	0.3	1	2	1.8%	0.351 - 0.793		230	46
Acetochlor Combination ⁴	Summation	N/A	11	38	33.9%	0.0507 - 2.23		230 ⁴	46 ⁴
Acifluorfen	Herbicide	0.05				_			
Alachlor	Herbicide	0.05				-		2	0.2
Alachlor ESA	Metabolite	0.05	17	77	68.8%	0.0514 - 23.2		20	4
Alachlor OA	Metabolite	0.25	3	9	8.0%	0.262 - 2.63			
Aldicarb Sulfone	Insecticide	0.05				-			
Aldicarb Sulfoxide	Insecticide	0.071				-			
Aminopyralid	Herbicide	0.15				-			
Atrazine	Herbicide	0.05	7	25	22.3%	0.051 - 0.246		3	0.3
De-ethyl atrazine	Metabolite	0.05	11	37	33.0%	0.0505 - 0.787		3	0.3
De-isopropyl atrazine	Metabolite	0.05	12	28	25.0%	0.0504 - 0.488		3	0.3
Di-amino atrazine	Metabolite	0.15	9	20	17.9%	0.151 - 0.377		3	0.3
Atrazine (TCR)	Summation	0.05	16	53	47.3%	0.0505 - 1.22		3	0.3
Azoxystrobin	Fungicide	0.05				-			
Benfluralin	Herbicide	0.05				-			
Bentazon	Herbicide	0.05	4	15	13.4%	0.0501 - 6.09		300	60
Bicyclopyrone	Herbicide	0.05				-			
Bifentrin	Insecticide	0.0050				-			
Bromacil	Herbicide	0.05				-			
Carbaryl	Insecticide	0.05				-		40	4
Carbofuran	Insecticide	0.05				_		40	8

	1				I	1		T	I
Chloramben	Herbicide	0.32						150	30
Chlorantraniliprole	Insecticide	0.050	7	29	25.9%	0.051 - 1.09	16,000		
Chlorothalonil	Fungicide	0.10	1	1	0.9%	0.123			
Chlorpyrifos	Insecticide	0.05						2	0.4
Chlorpyrifos Oxon	Metabolite	0.05							
Clomazone	Herbicide	0.05							
Clopyralid	Herbicide	0.05	2	3	2.7%	0.131 - 0.232			
Clothianidin	Insecticide	0.010	19	87	77.7%	0.0115 - 1.59	1,000		
Cyantraniliprole	Insecticide	0.050	3	5	4.5%	0.0509 - 0.0943			
Cyclaniliprole	Insecticide	0.2							
Cyfluthrin	Insecticide	0.050							
lambda- Cyhalothrin	Insecticide	0.020							
Cypermethrin	Insecticide	0.1							
Cyprosulfamide	Safener	0.05							
Dacthal	Herbicide	0.05						70	14
Dacthal Di-acid	Metabolite	0.05					70		
Dacthal Mono-acid	Metabolite	0.05					70		
Dacthal Combination ⁵	Summation	N/A					70 ⁵		
Diazinon	Insecticide	0.05							
Diazinon oxon	Metabolite	0.05							
Dicamba	Herbicide	0.20						300	60
Dichlobenil	Herbicide	0.05							
Dimethenamid	Herbicide	0.05	1	2	1.8%	0.112 - 0.153		50	5
Dimethenamid ESA	Metabolite	0.05	4	12	10.7%	0.0842 - 10.1			
Dimethenamid OA	Metabolite	0.05	2	4	3.6%	0.067 - 1.34			
Dimethoate	Insecticide	0.050						2	0.4
Dinotefuran	Insecticide	0.010							
Diuron	Herbicide	0.05							
EPTC	Herbicide	0.05						250	50
Esfenvalerate	Insecticide	0.025							
Ethalfluralin	Herbicide	0.05							
Ethofumesate	Herbicide	0.05							
Flumetsulam	Herbicide	0.05	3	3	2.7%	0.0506 - 0.0764	10,000		
Flupyradifurone	Insecticide	0.05							
Fluroxypyr	Insecticide	0.050							
Fomesafen	Herbicide	0.05	3	6	5.4%	0.0563 - 0.425	25		

į	•					•			
Halosulfuron methyl	Herbicide	0.05							
Hexazinone	Herbicide	0.05					400		
Imazapyr	Herbicide	0.05							
Imazethapyr	Herbicide	0.05							
Imidacloprid	Insecticide	0.010	11	51	45.5%	0.0118 - 1.52	0.2		
Isoxaflutole	Herbicide	0.05					3		
Isoxaflutole DKN	Metabolite	0.05					3		
Isoxaflutole Combination ⁶	Summation	N/A					3 ⁶		
Linuron	Herbicide	0.05							
МСРА	Herbicide	0.05							
МСРВ	Herbicide	0.1							
МСРР	Herbicide	0.05							
Malathion	Insecticide	0.05							
Mesotrione	Herbicide	0.1							
Metalaxyl	Fungicide	0.05	9	29	25.9%	0.0517 - 0.499	800		
Methyl Parathion	Insecticide	0.05							
Metolachlor	Herbicide	0.05	12	52	46.4%	0.0505 - 11.2		100	10
Metolachlor ESA	Metabolite	0.05	22	111	99.1%	0.068 - 43.9		1,300	260
Metolachlor OA	Metabolite	0.27	17	79	70.5%	0.299 - 21.3		1,300	260
Metochlor Combination ⁷	Summation	N/A	22	111	99.1%	0.068 - 80.3		1,300 ⁷	260 ⁷
Metribuzin	Herbicide	0.05	9	47	42.0%	0.0575 - 6.47		70	14
Metribuzin DA	Metabolite	0.1	6	18	16.1%	0.143 - 1.17			
Metribuzin DADK	Metabolite	0.12	9	44	39.3%	0.124 - 3.51			
Metsulfuron methyl	Herbicide	0.05							
Nicosulfuron	Herbicide	0.05							
Norflurazon	Herbicide	0.05							
Oxadiazon	Herbicide	0.05							
Pendimethalin	Herbicide	0.05							
Permethrin	Insecticide	0.030							
Picloram	Herbicide	0.05						500	100
Prometone	Herbicide	0.05	1	2	1.8%	0.0697 - 0.0885		100	20
Prometryn	Herbicide	0.05							
Propiconazole	Fungicide	0.05							
Prothioconazole-desthio	Metabolite	0.050							
Saflufenacil	Herbicide	0.05	2	5	4.5%	0.794 - 1.05	460		
Simazine	Herbicide	0.05	2	6	5.4%	0.0744 - 0.273		4	0.4

Sulfentrazone	Herbicide	0.05	3	6	5.4%	0.0585 - 0.141	1,000		
Sulfometuron methyl	Herbicide	0.05							
Tebupirimphos	Insecticide	0.05							
Tembotrione	Herbicide	0.10							
Thiacloprid	Insecticide	0.010							
Thiamethoxam	Insecticide	0.010	14	47	42.0%	0.0104 - 5.34	120		
Thiencarbazone methyl	Herbicide	0.05					800		
Triclopyr	Herbicide	0.05							
Trifluralin	Herbicide	0.05						7.5	0.75

Notes:

- 1 Total number of sites in 2022 were 22.
- 2 Total number of samples collected in 2022 were 112.
- 3 Wisconsin Department of Health Services(DHS) Drinking Water Health Advisory (June 2019, November 2020, revised February 2022).
- 4 Combined sum of acetochlor metabolites ESA and OA.
- 5 Combined sum of metabolites (di- and mono-acid) and parent material dacthal.
- 6 Combined sum of metabolite DKN and parent material isoxaflutole.
- 7 Combined sum of metolachlor metabolites ESA and OA.
- -- Indicates that Health Advisory Level value in Wisconsin not established.
- DKN diketonitrile
- ESA ethane sulfonic acid
- OA oxanilic acid; can also be identified as OXA.
- $\mu g \! / \! L$ micrograms per liter or parts per billion
- TCR Total Chlorinated Residue for Atrazine. Reflects an additive quantity of atrazine (parent material) and its three metabolites (de-ethyl, de-isopropyl and di-amino atrazine).

Indicates no detects in excess of laboratory reporting limits.

Indicates detects in excess of laboratory reporting limits.

Indicates detects in excess of laboratory reporting limits and Wis. Admin. Code ch. NR 140 Preventive Action Limit.

Indicates detects in excess of laboratory reporting limits and either Wis. Admin. Code ch. NR 140 Enforcement Standard or DHS Drinking Water Health Advisory.

Table B 4: Field-Edge Groundwater Monitoring Program - 2022 Land Pesticide/Nitrogen- and Irrigation-Use (as Provided by Growers)

COUNTY	SITE (Grower)	YEAR	CROP	NUTRIENT MANAGEMENT PLAN	IRRIGATION APPLIED (in inches)	NITROGEN APPLIED (in lbs/acre)	PESTICIDE PRODUCT APPLIED
							glyphosate
		2016	corn silage		6.45	374.8	atrazine
							dicamba
	AD2	2017 1					
		2018 1					
		2019 1					
		2020 1					
Adams		2021 ¹ 2022 ¹					
		2016 ¹					
		2016 2017 ¹					
		2018 1					
	AD5	2019 ¹					
		2020 1					
		2021 1					
		2022 1					
		2016 1					
		2017 1					
1		2018 ¹				Ibs/acre	
							glyphosate
Barron	BR3	2019	corn	no	2.24	300	topramezone, dimethenamid
							acetochlor, flumetsulam, clopyralid
		2020 ¹					
		2021 1					
		2022 1					
							simazine
						216.7	metolachlor
							mesotrione
							topramezone
		2016 seed corn 3 216.7	bifenthrin				
							pyraclastrobin, metconazole
							2,4-D
							glyphosate
							sodium chlorate
							glyphosate clethodim
		2017	soybeans		2	6.0	lambda-cyhalothrin
							glufosinate
		2018 1					
		2010					glyphosate
							metribuzin
							dimethenamid
		2019	soybeans	yes	2	1./	glufosinate
	DN1						clethodim
Dane	DINI						lambda-cyhalothrin
1							metolachlor
1							glycine
1							mesotrione
							simazine
1		2020	seed corn	yes	4	201.95	topramezone
1							acetochlor simazine
1							
1							azoxystrobin, cyproconazole bifenthrin
1							metaconazole, pyraclostrobin
1		2021 1					
1							simazine
1							bifenthrin
							pydiflumatafen
		2022			_	445	metolachlor
1		2022	corn	yes	5	415	glyphosate
1							mesotrione
							acetochlor
							azoxystrobin

	,			,		1	1	
							dimethenamid	
		2016	soybeans		3.43	100.0	flumioxazin	
							clethodim benzoic acid	
								peroxyacetic acid, hydrogen peroxide
							oxyfluorfen	
		2017	horseradish		0.8	140.5	sulfentrazone	
		2017	Horseradish		0.0	140.5	glyphosate	
							clethodim	
							chlorothalonil	
							glyphosate	
	DU1	2018	corn (grain)	no	3.97	193.3	dicamba	
			10 7				dimethenamid, saflufenacil	
			2019 ¹					
							pendimethalin	
							metolachlor	
							imazamox	
		2020	kidney beans	no	2.5	91.98	sodium bentazon	
							clethodim	
							beta-cyfluthrin, imidacloprid	
		1	1			+	saflufenacil dicamba	
							diramba	
		2021	corn	no	15.6	1076.9	glyphosate	
							saflufenacil	
		2022 1						
		2016			8	241.0	glyphosate	
		2016	corn		٥	241.0	dimethenamid, saflufenacil	
							pendimethalin	
						85.0	metolachlor	
							bentazon	
Dunn		2017	kidney beans		4		fomesafen	
							imazamox	
							clethodim saflufenacil	
							thiamethoxam, fludioxonil	
					5		dimethenamid, saflufenacil	
		2018	corn			66.2	glyphosate	
	DU2						atrazine	
								pendimethalin
			kidney beans	yes	3.25		glyphosate	
							metolachlor	
							imazamox	
		2019				72.5	bentazon	
							fomesafen clethodim	
							imidacloprid	
							saflufenacil	
							pendimethalin	
							metolachlor	
							imazamox	
		2020	kidney beans	no	2.5	91.98	sodium bentazon	
							clethodim	
							beta-cyfluthrin, imidacloprid	
						1	saflufenacil	
							clothianidin	
							glyphosate dicamba	
		2021	corn	no	4.2	85	dimethenamide	
							pyroxasulfone	
							saflufenacil	
							metolachlor	
		2022	soybeans	no	4	0	metribuzin	
		2022	Suyucans	110			glufosinate	
							glyphosate	
		2016 1			na			
		2017 ¹			na na			
		aa - 1						
Great	GR1	2018 1						
Grant	GR1	2019 ¹			na			
Grant	GR1	2019 ¹ 2020 ¹			na na			
Grant	GR1	2019 ¹			na			

							1					
							metam sodium azoxystrobib, difenoconazole					
							metalaxyl					
							imidacloprid					
							azoxystrobin					
							metribuzin					
							novaluron					
							spinosad					
		2016	potatoes		18.4	374.4	beta-cyfluthrin					
							rimsulfuron					
							chlorothalonil					
							pyraclostrobin					
							boscolid					
							abamectin pyrimethanil					
							mancozeb					
							diquat bromide					
								glyphosate				
							bifenthrin					
									glufosinate			
		2017	seed corn	seed corn 8.9	198.5	MCPA, bromoxynil						
							pendimethalin					
							pyraclostrobin, metconazole					
							propiconazole, azoxystrobin					
								thiamethoxam				
		2010				77.0	halosulfuron-methyl s-metolachlor					
		2018	snap beans	no	5.7	77.0	s-metolachlor imazamox, bentazon					
							sethoxydim					
	IW1	2019 ¹					setnoxydim 					
		2015					bifenthrin, pyraclostrobin					
							metribuzin					
					metolachlor							
							indoxacarb					
							acetamiprid					
							chlorothalonil					
							spinosad					
		2020	potatoes	no	21	225.93	lambda-cyhalothrin					
							mefentrifluconazole					
							abamectin					
							zoxamide pyrimethanil					
							mancozeb					
							fentin hydroxide					
							diquat dibromide					
						1	abamectin					
							azoxystrobin					
							bifenthrin					
Iowa							bromoxynil					
							fludioxonil					
					9.4	199	tembotrione					
		2021	seed corn	no			glyphosate					
							mefanoxam					
							pendimethalin propiconazole					
							pydiflumetofen					
							thiabendazole					
							thiamethoxam					
		2021 1										
							glyphosate					
						195.5	bifenthrin					
							metolachlor					
		2016	seed corn		12.8		pendimethalin					
							tembotrione					
							bromoxynil					
							azoxystrobin glyphosate					
		2017	span hears		66	77.7	azoxystrobin glyphosate EPTC					
		2017	snap beans		6.6	72.2	azoxystrobin glyphosate EPTC thiamethoxam					
		2017	snap beans		6.6	72.2	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin					
		2017	snap beans		6.6	72.2	azoxystrobin glyphosate EPTC thiamethoxam					
		2017	snap beans		6.6	72.2	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor,					
							azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione					
		2017	snap beans		6.6	72.2	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin					
							azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam					
		2018	seed corn	no	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin					
	IW2						azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin					
	IW2	2018	seed corn	no	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin					
	IW2	2018	seed corn	no	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin					
	IW2	2018 2019 ¹	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate					
	IW2	2018	seed corn	no	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin —— bifenthrin glufosinate metolachlor					
	IW2	2018 2019 ¹	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosulfuron					
	IW2	2018 2019 ¹	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosulfuron pyroxasulfone pendimethalin					
	IW2	2018 2019 ¹	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosulfuron pyroxasulfone pendimethalin azoxystrobin, propiconazole, pydiflumetofen					
	IW2	2018 2019 ¹	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazmox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosulfuron pyroxasulfone pendimethalin azoxystrobin, propiconazole, pydiflumetofen bifenthrin					
	IW2	2018 2019 ¹	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin —— bifenthrin glufosinate metolachlor nicosulfuron pyroxasulfone pendimethalin azoxystrobin, ropiconazole, pydiflumetofen bifenthrin captan					
	IW2	2018 2019 ¹	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin blcyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosulfuron pyroxasulfone pendimethalin azoxystrobin, propiconazole, pydiflumetofen bifenthrin captan glyphosate					
	IW2	2018 2019 ¹	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazmox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosulfuron pyroxasulfone pendimethalin azoxystrobin, propiconazole, pydiflumetofen bifenthrin captan glyphosate imazomox, bentazon					
	IW2	2018 2019 ¹ 2020	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin ————————————————————————————————————					
	IW2	2018 2019 ¹	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosulfuron pyroxasulfone pendimethalin azoxystrobin, propiconazole, pydiflumetofen bifenthrin captan glyphosate imazomox, bentazon halosulfuron-methyl					
	IW2	2018 2019 ¹ 2020	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosulfuron pyroxasulfone pendimethalin azoxystrobin, propiconazole, pydiflumetofen bifenthrin captan glyphosate imazomox, bentazon halosulfuron-methyl matalaxyl sethoxydim					
	IW2	2018 2019 ¹ 2020	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosufuron pyroxasuffone pendimethalin azoxystrobin, propionazole, pydiflumetofen bifenthrin captan glyphosate imazomox, bentazon halosufuron-methyl matalaxyl sethoxydim metolachlor					
	IW2	2018 2019 ¹ 2020	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosufuron pyroxasuffone pendimethalin azoxystrobin, propiconazole, pydiflumetofen bifenthrin captan glyphosate imazomox, bentazon halosufuron-methyl matalaxyl sethoxydim metolachlor					
	IW2	2018 2019 ¹ 2020	seed corn	no 	12.1	256.0	azoxystrobin glyphosate EPTC thiamethoxam bifenthrin imazamox, bentazon bifenthrin bicyclopyrone, metolachlor, mesotrione pendimethalin thiamethoxam azoxystrobin bifenthrin glufosinate metolachlor nicosufuron pyroxasuffone pendimethalin azoxystrobin, propionazole, pydiflumetofen bifenthrin captan glyphosate imazomox, bentazon halosufuron-methyl matalaxyl sethoxydim metolachlor					

		ans 1		1		1																
		2016 ¹ 2017 ¹			na																	
					na																	
teeleeen	JK3	2018 ¹ 2019 ¹			na																	
Jackson		2019 2020 ¹			na na																	
		2020			na																	
		2021			na																	
							atrazine															
		2016	sweet corn		8	211.0	metolachlor															
							metolachlor															
		2017	snap beans		2.9	122.0	halosulfuron-methyl															
							atrazine															
		2018	sweet corn	no	8	228.6	metolachlor															
							azoxystrobin															
							chlorothalonil															
							esfenvalerate															
							spinosad															
	JN1						thiamethoxam															
		2019	potatoes	no	12.5	65.05	diquat dibromide															
							boscalid															
							metribuzin															
Juneau							cyantraniliprole, abamectin															
										metam sodium												
							metalaxyl															
		2020	sweet corn	no	9.5	212.37	atrazine															
		-		-		-	metolachlor															
		2021	snap beans	no	5	152.6	halosulfuron-methyl															
							metolachlor															
		2021 1																				
		2016 1			na																	
		2017 1			na																	
	JN3	2018 1			na																	
		2019 ¹ 2020 ¹			na																	
		2020 ¹			na																	
		2021 ¹			na na																	
		2022			110		glyphosate															
							lorsban															
		2016	corn silage			179.5	acetochlor															
							dicamba															
							glyphosate															
		2017	soybeans			0.0	2,4-D															
			,				imazethapyr															
							glyphosate															
	LC2	2018	corn	yes	2.5	705.7	atrazine, acetochlor															
La Crosse							mesotrione															
							glyphosate															
							methansulfonamide															
		2019	beans			0.0	metribuzin															
								metolachlor														
									glyphosate, imazethapyr													
							2020¹															
															2021 ¹							
		2022	alfalfa	yes	5.25	0	none															
		2016 1																				
		2017 1																				
land-d-	LN1	2018 1																				
Langlade		2019 1																				
		20201																				
		2021 2022	sweet corn		2	220	nicosulfuron															
	+	2022 2016 ¹	sweet corn	yes 			nicosuituron 															
		2016																				
							metolachlor															
		2018	sweet corn	yes	4.6	164.0	atrazine															
							chlorothalonil															
							azoxystrobin															
Davisa-	PR1						spinetram															
Portage		2019	potatoes	yes	6.7	159	abamectin, cyantraniliprole															
							imidacloprid															
							novaluron															
							diqust															
		20201	field corn		7.2	167.17	glyphosate															
		2021 1																				
		2022 1																				
		2016	soybeans		na		glyphosate															
							glyphosate															
		2017	corn		na	250.0	tembotrione															
C+ C1	SC1	2040	g8				acetochlor															
St. Croix		2018	soybeans	no	na	0.0	glyphosate															
		2019 1			na																	
												_						2020 ¹ 2021 ¹			na	
		2027			na																	
					na																	
		2022 ¹			P2	_	_															
		2022 ¹ 2016 ¹			na																	
		2022 ¹ 2016 ¹ 2017 ¹			na																	
Sauk	SK6	2022 ¹ 2016 ¹ 2017 ¹ 2018 ¹			na na																	
Sauk	SK6	2022 ¹ 2016 ¹ 2017 ¹ 2018 ¹ 2019 ¹			na na 																	
Sauk	SKG	2022 ¹ 2016 ¹ 2017 ¹ 2018 ¹ 2019 ¹ 2020 ¹			na na 																	
Sauk	SKG	2022 ¹ 2016 ¹ 2017 ¹ 2018 ¹ 2019 ¹			na na 																	

						T															
		2016 1																			
		2017 1																			
	TR1	2018 1																			
Trempealeau		2019 1																			
		20201																			
		2021																			
		2022 1		-																	
							acetochlor														
		2016	corn		na	132.0	clopyralid														
						-	flumetsulam														
		2017	soybeans		na	0.0	glyphosate														
Waupaca	WP2	2018	soybeans	yes	na	0.0	glyphosate														
waupaca		2019	corn		na	122.0	acetochlor, clopyralid, flumetsular														
		2019	COM	yes	lld .	122.0	glyphosate														
		2020	corn	yes	na	97.9	acetochlor, clopyralid, flumetsulan														
		2021	soybeans	yes	na	0	glyphosate														
			2022 ¹																		
		LULL					glyphosate														
							pendimethalin														
							chlorothalonil														
		2016	carrots		9.08	176.0	esfenvalerate														
							clethodim														
							azoxystrobin														
							glyphosate														
							thiamethoxam, fludioxonil														
							mancozeb														
							azoxystrobin														
							pentachloronitrobenzene														
							metolachlor														
							metribuzin														
							rimsulfuron														
						chlorothalonil															
		2017	potatoes		13.62	115.1	novaluron														
							metalaxyl														
							spinosad														
							boscolid														
							cyantraniliprole, abamectin														
	11/54								pyraclostrobin												
				oxathiapiprolin																	
							fentin hydroxide														
	WS4						diquat bromide														
									metolachlor												
										simazine											
		2018	corn	no	9.1	70.6	glyphosate														
																		ammonium sulfamate			
															2019	haana		2.42	24.06	metolachlor	
													2019	beans	no	2.42	24.96	halosulfuron-methyl			
													pendimethalin								
													clethodim								
							prometryn														
			2020			12.12	241.3	carfentrazone-ethyl													
																2020	carrots	no	12.12	241.5	esfenvalerate
																				chlorothalonil	
																			azoxystrobin		
Waushara																		boscalid			
																	abamectin				
															cyantraniliprole						
												esfenvalerate									
										2021	potatoes	no	12.71	292.3	metolachlor						
													2021	potatoes	no	12.71		novaluron			
										pendimethalin											
				1			phosmet														
							spinetoram														
		20221																			
				1			glyphosate														
		2016	corn		8.35	70.4	simazine														
					+		metolachlor														
		2017	h	1		105.0	glyphosate														
		2017	beans		6	105.6	metolachlor halosulfuron-methyl														
				1			clethodim														
		2018	carrots	no	12.76	254.1	carfentrazone-ethyl cypermethrin														
							azoxystrobin														
					+		pendimethalin														
							metribuzin														
				İ			novaluron														
	- WICE						nhaemat														
	WS6						phosmet														
	WS6	2019	potatoes	no	10.9	200.16	chlorothalonil														
	WS6	2019	potatoes	no	10.9	200.16	chlorothalonil boscolid														
	WS6	2019	potatoes	no	10.9	200.16	chlorothalonil boscolid cyantraniliprole, abamectin														
	WS6	2019	potatoes	no	10.9	200.16	chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl														
	WS6	2019	potatoes	no	10.9	200.16	chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl fentin hydroxide														
	WS6	2019	potatoes	no	10.9	200.16	chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl fentin hydroxide diquat dibromide														
	WS6		potatoes	no			chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl fentin hydroxide diquat dibromide glyphosate														
	WS6	2019	potatoes	no	7.93	200.16 70.78	chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl fentin hydroxide diquat dibromide glyphosate metolachlor														
	W56						chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl fentin hydroxide diquat dibromide glyphosate metolachlor simazine														
	WS6						chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl fentin hydroxide diquat dibromide glyphosate metolachlor simazine tembotrione														
	WS6	2020	corn	no	7.93	70.78	chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl fentin hydroxide diquat dibromide glyphosate metolachlor simazine tembotrione metolachlor														
	WS6						chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl fentin hydroxide diquat dibromide glyphosate metolachlor simazine tembotrione metolachlor simazine														
	WS6	2020	corn	no	7.93	70.78	chlorothalonil boscolid cyantraniliprole, abamectin metalaxyl fentin hydroxide diquat dibromide glyphosate metolachlor simazine tembotrione metolachlor														

		2016	
		2017	
		2018	
Waushara	WS7	2019	
		2020	
		2021	
		2022	

- Grower did not provide information in Annual Reporting Form.
 Site is located within an atrazine Prohibition Area.
 Information not provided by Grower.
 In Fields are not equipped to irrigate.
 Site is a research location with multiple crops and herbicide types and application rates. Information not available for publication.

Table B 5: Field-Edge Groundwater Monitoring Program - 2022 Imidacloprid Concentrations in Groundwater Samples

County	Site (Grower)	Well Name	WUWN	Sample Date	Imidacloprid
		AD2-1	BH954	5/17/2022	0.0275
	_			10/18/2022	0
		AD2-4	VR844	5/17/2022 10/18/2022	1.52 0.231
	AD2			5/17/2022	0.309
		AD2-5	VR845	10/18/2022	0.309
				5/17/2022	0
		AD2-6	PT421	10/18/2022	0
Adams				5/17/2022	0
		AD5-1	CL461	10/18/2022	0
			VPO45	5/17/2022	0.102
	4.05	AD5-4	VR846	10/18/2022	0.0855
	AD5	AD5-5	VR847	5/17/2022	0.241
		AD3-3	V1047	10/18/2022	0.234
		AD5-6	PT422	5/17/2022	0
		7.25 0		10/18/2022	0
Barron		BR3-1	BR279	6/1/2022	0
	BR3	5110 1	511275	11/29/2022	0
		BR3-3	BR281	6/1/2022	0
				11/29/2022	0
		DN1-1	PT428	4/19/2022	0
Dane	DN1			10/27/2022	0 0185
		DN1-3	BR252	4/19/2022	0.0185 0
				10/27/2022 6/1/2022	0
		DU1-1	AO384	11/29/2022	0
	DU1			6/1/2022	0
		DU1-3	AO386	11/29/2022	0
Dunn				6/1/2022	0
		DU2-1	AO387	11/29/2022	0
	DU2			6/1/2022	0
		DU2-3	AO389	11/29/2022	0
Grant				4/19/2022	0
		GR1-1	BR255	10/27/2022	0
	GR1			4/19/2022	0
		GR1-3	BR257	10/27/2022	0
				4/27/2022	0.0789
		IW1-4	BR259	11/10/2022	0.0371
		IW1-5	BR260	4/27/2022	0.0495
	IW1	IW1-6	BR261	11/10/2022	0.0346
		IW1-7	BH967	4/27/2022	0.0245
		1001-7	B11307	11/10/2022	0.0198
		IW1-8	PT425	4/27/2022	0.146
Iowa		5		11/10/2022	0.153
		IW2-1	BR036	4/27/2022	0.122
				11/10/2022	0.0349
		IW2-3	BR038	4/27/2022	0.207
	IW2			11/10/2022	0.264
		IW2-4	PT426	4/27/2022	0.0286
				11/10/2022	0.0304
		IW2-5	PT427	4/27/2022 11/10/2022	0.0146
					0
		JK3-1	JH982	5/11/2022 11/17/2022	0
Jackson	JK3			5/11/2022	0
		JK3-2	JH981	11/17/2022	0
				5/11/2022	0
		JN1-1	BR046	12/6/2022	0
	JN1			5/11/2022	0.0516
		JN1-3	BR048	12/6/2022	0.0216
Juneau		nue :		5/17/2022	0
	INIO	JN3-1	JH937	11/17/2022	0
	JN3	ואום ם	111020	5/17/2022	0
		JN3-2	JH936	11/17/2022	0
		102.4	1/7204	6/2/2022	0
La Cracca	103	LC2-1	VZ391	11/28/2022	0
La Crosse	LC2	LC2-2	\/7202	6/2/2022	0
		LCZ-Z	VZ392	11/28/2022	0
		LN1-1	BH964	5/3/2022	0
Langlade	LN1	FINT-T	40END	10/11/2022	0
Langiauc	LIAT	LN1-3	BH966	5/3/2022	0
	1	LIVI-3	011200	10/11/2022	0

		PR1-1	BR207	5/3/2022	0
		PKI-1	BR207	10/11/2022	0
Portage	PR1	PR1-4	VR848	5/3/2022	0.0266
Fortage		FR1-4	VN048	10/11/2022	0.0206
		PR1-5	VR849	5/3/2022	0.0285
		FK1-3	V1(843	10/11/2022	0.0226
		SC1-1	JH938	6/2/2022	0
St. Croix	SC1	3C1-1	111938	11/28/2022	0
St. Cluix	3C1	SC1-2	JH939	6/2/2022	0
		SC1-2	JH939	11/28/2022	0
		SK6-2	BB247	4/19/2022	0.351
	SK6	SK6-2	BB247	10/27/2022	0.217
Const		SK6-3		4/19/2022	0.0783
Sauk		SK6-3	BB248	10/27/2022	0.114
		SK6-4	PT424	4/19/2022	0
		SK6-4		10/27/2022	0
		TR1-1	PX201	6/2/2022	0
T	TD4	IRI-I	PX201	11/28/2022	0
Trempealeau	TR1	TR1-2	PX202	6/2/2022	0
			PX202	11/28/2022	0
		WP2-1	JH985	5/3/2022	0
	WP2			10/11/2022	0
Waupaca		WP2-2	JH984	5/3/2022	0
				10/11/2022	0
				5/4/2022	0.149
		WS4-1	BB258	11/3/2022	0.779
	WS4			5/4/2022	0.0304
		WS4-4	BB261	11/3/2022	0.0225
		11100 4		5/4/2022	0.0229
		WS6-1	JH989	11/3/2022	0.0144
	WS6	11100 0		5/4/2022	0.0249
Manada a sa		WS6-2	JH990	11/3/2022	0.0235
Waushara		W67.4	1/2044	5/4/2022	0.0493
		WS7-1	VR841	11/3/2022	0.0336
				5/4/2022	0.167
	W67	WS7-2	VR842	11/3/2022	0.0183
	WS7	11107 0		5/4/2022	0.0345
		WS7-3	VR843	11/3/2022	0.0118
				5/4/2022	0.0702
		WS7-4	PT423	11/3/2022	0.0319
			I	11,0,2022	0.0010

N	otes	

WUWN Wisconsin Unique Well Number

µg/L Micrograms per liter or parts per billion

Concentration does not exceed laborato

Concentration does not exceed laboratory reporting limit of 0.01 µg/L.

Exceeds Wisconsin Department of Health Services Drinking Water Health Advisory of 0.2 µg/L (June 2019, November 2020, revised February 2022).

Table B 6: Field-Edge Groundwater Monitoring Program - 2022 Alachlor ESA Concentrations in Groundwater Samples

County	Site (Grower)	Well Name	WUWN	Sample Date	Alachlor ESA
		AD2-1	BH954	5/17/2022	0.191
				10/18/2022	0.194
		AD2-4	VR844	5/17/2022	0.347
	AD2	7102 4	VII.O-1-1	10/18/2022	0.28
	7.52	AD2-5	VR845	5/17/2022	0.514
		ADZ 3	V1(0+5	10/18/2022	0.605
		AD2-6	PT421	5/17/2022	3.27
Adams		ADZ-0	F1421	10/18/2022	2.97
Audilis		AD5-1	CL461	5/17/2022	0
		AD3-1	CL461	10/18/2022	0.816
		ADE 4	\/D04C	5/17/2022	1.23
	405	AD5-4	VR846	10/18/2022	1.11
	AD5		1/0047	5/17/2022	9.7
		AD5-5	VR847	10/18/2022	9.61
				5/17/2022	1.03
		AD5-6	PT422	10/18/2022	1.19
				6/1/2022	0
		BR3-1	BR279	11/29/2022	0
Barron	BR3			6/1/2022	0
		BR3-3	BR281	11/29/2022	0
		DN1-1	PT428	4/19/2022	0
Dane	DN1			10/27/2022	0
		DN1-3	BR252	4/19/2022	0
				10/27/2022	0.0514
		DU1-1	AO384	6/1/2022	0.257
	DU1	5011		11/29/2022	0.417
	501	DU1-3	AO386	6/1/2022	0.15
Dunn		D01-3	A0360	11/29/2022	0.156
		DU2 1	A O 2 0 7	6/1/2022	0.118
	DIID	DU2-1	AO387	11/29/2022	0.135
	DU2	5112.2	4.0200	6/1/2022	0.0876
		DU2-3	AO389	11/29/2022	0.107
				4/19/2022	0
		GR1-1	BR255	10/27/2022	0
Grant	GR1			4/19/2022	0.0516
		GR1-3	BR257	10/27/2022	0.0591
				4/27/2022	0.757
		IW1-4	BR259	11/10/2022	0.859
		IW1-5	BR260	4/27/2022	0.713
		IW1-6	BR261	11/10/2022	1.33
	IW1	1001-0	DIVZOI	4/27/2022	
		IW1-7	BH967	11/10/2022	1.5 1.69
		IW1-8	PT425	4/27/2022	1.55
Iowa				11/10/2022	1.7
		IW2-1	BR036	4/27/2022	0.313
				11/10/2022	0.579
		IW2-3	BR038	4/27/2022	0.336
	IW2			11/10/2022	0.307
		IW2-4	PT426	4/27/2022	0.484
		= .	=•	11/10/2022	0.612
		IW2-5	PT427	4/27/2022	0.312
		1112 3	1174/	11/10/2022	0.356
		JK3-1	JH982	5/11/2022	0
lackson	JK3	1/2-1	JU207	11/17/2022	0
Jackson	1/2	נ צעו	111001	5/11/2022	0
		JK3-2	JH981	11/17/2022	0
				5/11/2022	0
		JN1-1	BR046	12/6/2022	0
	JN1			5/11/2022	0.925
		JN1-3	BR048	12/6/2022	0.97
Juneau				5/17/2022	1.24
		JN3-1	JH937	11/17/2022	23.2
	JN3				
	11/13			5/17/2022	0

		102.4	1/7204	6/2/2022	0
1. 6	1.62	LC2-1	VZ391	11/28/2022	0
La Crosse	LC2		1,7200	6/2/2022	0
		LC2-2	VZ392	11/28/2022	0
			211224	5/3/2022	0
		LN1-1	BH964	10/11/2022	0
Langlade	LN1			5/3/2022	0
		LN1-3	BH966	10/11/2022	0
		DD4.4	DD207	5/3/2022	0
		PR1-1	BR207	10/11/2022	0
Doubons	PR1	PR1-4	VR848	5/3/2022	0.472
Portage	PRI	PR1-4	V1\040	10/11/2022	0.545
		PR1-5	VR849	5/3/2022	0.586
		PK1-5	VK649	10/11/2022	0.673
		SC1-1	JH938	6/2/2022	0.163
St. Croix	SC1	3C1-1	10320	11/28/2022	0.24
St. Croix		SC1-2	JH939	6/2/2022	0.139
		3C1-2	10333	11/28/2022	0.103
		SK6-2	DD247	4/19/2022	0.478
		3KU-2	BB247	10/27/2022	0.699
Sauk	SK6	SK6-3	BB248	4/19/2022	0.232
Sauk	300	310-3	DD246	10/27/2022	0.448
		SK6-4	PT424	4/19/2022	1.15
		3N0-4	P1424	10/27/2022	0.326
		TR1-1	PX201	6/2/2022	0
Trempealeau	TR1	11/1-1	PX201	11/28/2022	0
Trempealeau		TR1-2	PX202	6/2/2022	0
			PAZUZ	11/28/2022	0
	WP2	WP2-1	ILLOOF	5/3/2022	0.0519
Waupaca		VV P Z - 1	JH985	10/11/2022	0.0567
waupaca		WP2-2	JH984	5/3/2022	0
		VVP2-2	JП904	10/11/2022	0.0588
		WS4-1	BB258	5/4/2022	0.326
	WS4	VV34-1	DD236	11/3/2022	0.699
	VV34	WS4-4	BB261	5/4/2022	0.158
		VV 34-4	BB201	11/3/2022	0.307
		WS6-1	JH989	5/4/2022	0.194
	WS6	VV 30-1	10303	11/3/2022	0.251
	VV30	WS6-2	JH990	5/4/2022	0
Waushara		VV 30-2	311990	11/3/2022	0
vvauSiidid		WS7-1	VR841	5/4/2022	0.332
		AA21-T	A1/041	11/3/2022	0.217
		WS7-2	VR842	5/4/2022	0.564
	WS7	VV 37-Z	VIVO+Z	11/3/2022	0.393
	VV3/	WS7-3	VR843	5/4/2022	3.08
		vv 3/-3	V1\043	11/3/2022	3.31
		WS7-4	PT423	5/4/2022	4.88
		VV3/ 4	11423	11/3/2022	4.85

Table B 7: Field-Edge Groundwater Monitoring Program - 2022 Atrazine and Metabolite Concentrations in Groundwater Samples

County	Site (Grower)	Well Name	WUWN	Sample Date	Atrazine	De-ethyl Atrazine	De-isopropyl Atrazine	Di-amino Atrazine	Atrazine TCR			
		AD2-1	BH954	5/17/2022	0	0	0	0	0			
		ADZ-1	BH334	10/18/2022	0	0	0	0	0			
		AD2-4	VR844	5/17/2022	0.157	0.357	0	0	0.514			
	AD2			10/18/2022 5/17/2022	0.149 0.0839	0.231 0.252	0	0	0.38 0.3359			
		AD2-5	VR845	10/18/2022	0.0818	0.161	0	0	0.2428			
		4D2.C	DT 424	5/17/2022	0.246	0.784	0	0.188	1.218			
Adams		AD2-6	PT421	10/18/2022	0.244	0.787	0	0.189	1.22			
, idams		AD5-1	CL461	5/17/2022	0	0	0	0	0			
				10/18/2022	0	0	0	0	0			
		AD5-4	VR846	5/17/2022 10/18/2022	0.051 0.0803	0 0.0591	0.066	0	0.051 0.2054			
	AD5			5/17/2022	0.113	0.663	0	0.234	1.01			
		AD5-5	VR847	10/18/2022	0.114	0.587	0	0.228	0.929			
		AD5-6	PT422	5/17/2022	0	0.576	0	0	0.576			
		7.55 0		10/18/2022	0	0.618	0	0	0.618			
		BR3-1	BR279	6/1/2022	0.0942 0	0.0537	0	0	0.1479 0			
Barron	BR3			11/29/2022 6/1/2022	0	0	0	0	0			
		BR3-3	BR281	11/29/2022	0.0772	0	0	0	0.0772			
		DN1 1	PT428	4/19/2022	0	0	0	0	0			
Dane	DN1	DN1-1	P1428	10/27/2022	0	0	0	0	0			
		DN1-3	BR252	4/19/2022	0	0	0	0	0			
				10/27/2022 6/1/2022	0	0	0.0668 0.106	0	0.0668			
		DU1-1	AO384	11/29/2022	0	0	0.106	0	0.106 0.121			
	DU1	DU1 DU1-3		6/1/2022	0	0	0.137	0	0.137			
Dunn	DU1-3		AO386	11/29/2022	0	0	0.155	0	0.155			
Duilli	DU2-1		DU2-1	AO387	6/1/2022	0	0	0	0	0		
	DU2	502.1				11/29/2022	0	0	0	0	0	
		DU2-3		DU2-3	AO389	6/1/2022 11/29/2022	0	0	0	0	0	
				4/19/2022	0	0	0	0	0			
C	CD4	GR1-1	BR255	10/27/2022	0	0	0	0	0			
Grant	GR1	GR1-3	GR1-3	GR1-3	BR257	4/19/2022	0	0	0	0	0	
		GIVI-2	DIVZ37	10/27/2022	0	0	0	0	0			
		IW1-4	BR259	4/27/2022	0	0	0	0	0			
		IW1-5	BR260	11/10/2022 4/27/2022	0	0	0	0	0			
		IW1-6	BR261	11/10/2022	0	0	0	0	0			
	IW1	I\N/1-7				4/27/2022	0	0.0567	0.0571	0	0.1138	
		IW1-8		IW1-7	1001-7	BH967	11/10/2022	0	0.0591	0.0544	0	0.1135
				PT425	4/27/2022	0.067	0.0901	0.142	0.24	0.5391		
Iowa				11/10/2022 4/27/2022	0	0.07	0.119 0	0.235	0.424 0			
			IW2-1	BR036	11/10/2022	0	0	0	0	0		
		114/2 2	BB030	4/27/2022	0	0	0	0	0			
	IW2	IW2-3	BR038	11/10/2022	0	0	0	0	0			
	1174	IW2-4	PT426	4/27/2022	0	0	0.0695	0.156	0.2255			
				11/10/2022	0 163	0 130	0.0554	0	0.0554			
		IW2-5	PT427	4/27/2022 11/10/2022	0.162 0.161	0.139 0.137	0.0853 0.101	0.151 0.164	0.5373 0.563			
				5/11/2022	0.101	0.137	0.101	0.104	0.303			
lackson	IKS	JK3-1	JH982	11/17/2022	0	0	0	0	0			
Jackson	JK3	JK3-2	JH981	5/11/2022	0	0	0	0	0			
		3J Z	3301	11/17/2022	0	0	0	0	0			
		JN1-1	BR046	5/11/2022	0	0	0	0	0			
	JN1			12/6/2022 5/11/2022	0	0.052	0	0	0.052			
100000		JN1-3	BR048	12/6/2022	0	0.0552	0	0	0.0552			
Juneau		JN3-1	JH937	5/17/2022	0	0	0	0	0			
	JN3	JIN2-T	JH35/	11/17/2022	0	0	0	0	0			
		JN3-2	JH936	5/17/2022	0	0	0	0	0			
				11/17/2022 6/2/2022	0 0.0609	0 0.181	0	0	0 0.2419			
		LC2-1	VZ391	11/28/2022	0.0609	0.181	0.0504	0	0.2419			
La Crosse	LC2	162.2	1/7202	6/2/2022	0.0518	0.172	0	0	0.2238			
		LC2-2	VZ392	11/28/2022	0.0564	0.169	0	0	0.2254			
		LN1-1	BH964	5/3/2022	0	0	0	0	0			
Langlade	LN1			10/11/2022	0	0	0	0	0			
		LN1-3	вн966	5/3/2022 10/11/2022	0	0	0	0	0			
	L			10/11/2022	U	U	U	U	U			

			1	- /2 /222		_			_						
		PR1-1	BR207	5/3/2022	0	0	0	0	0						
				10/11/2022	0	0	0	0	0						
Portage	PR1	PR1-4	VR848	5/3/2022	0	0.0734	0	0	0.0734						
				10/11/2022	0	0.063	0	0	0.063						
		PR1-5	VR849	5/3/2022	0	0.0878	0	0	0.0878						
				10/11/2022	0	0.0962	0	0	0.0962						
		SC1-1	JH938	6/2/2022	0	0.0691	0.0885	0.337	0.4946						
St. Croix	SC1			11/28/2022	0	0.0733	0.0943	0.354	0.5216						
St. C. S.X	562	SC1-2	C1-2 JH939	6/2/2022	0	0	0	0	0						
			311333	11/28/2022	0	0.0505	0	0	0.0505						
		SK6-2	BB247	4/19/2022	0	0	0	0	0						
		3K0-2	00247	10/27/2022	0	0	0	0	0						
Sauk	SK6	5 SK6-3	CVC 2	SK6-3	cve 2	BB248	4/19/2022	0	0	0	0	0			
Jauk	SKO		DD240	10/27/2022	0	0	0	0	0						
		SK6-4	PT424	4/19/2022	0.127	0.307	0.283	0.308	1.025						
			310-4	JNU-4	3NU-4	SKD-4	3NO-4	JNU-4	3NO-4	F1424	10/27/2022	0.0972	0.151	0.155	0
		TD1 1	TD1 1	TD1 1	TD1 1	TR1-1	TD1 1	TD4 4	PX201	6/2/2022	0	0	0	0	0
T	TR1	1 1 1 1	PX201	11/28/2022	0	0	0	0	0						
Trempealeau	IKI	TR1-2	PX202	6/2/2022	0	0	0	0	0						
			TK1=2 FX202	11/28/2022	0	0	0	0	0						
		WP2-1	JH985	5/3/2022	0	0	0.0544	0.174	0.2284						
	14/00	VV P2-1	JH985	10/11/2022	0	0	0.0813	0.248	0.3293						
Waupaca	WP2	14/02 2	W/D2 2	P2-2 JH984	5/3/2022	0	0	0	0	0					
		WP2-2	JH984	10/11/2022	0	0	0	0	0						
		WS4-1	BB258	5/4/2022	0	0	0	0	0						
	WS4		88258	11/3/2022	0	0	0	0	0						
	W54		22264	5/4/2022	0	0	0.0793	0	0.0793						
		WS4-4	BB261	11/3/2022	0	0	0	0	0						
		VIICC 4	JH989	5/4/2022	0	0	0.449	0.377	0.826						
	11100	WS6-1	JH989	11/3/2022	0	0	0.488	0.294	0.782						
	WS6	WCC 2	111000	5/4/2022	0	0	0.218	0	0.218						
		WS6-2	JH990	11/3/2022	0	0	0.219	0	0.219						
Waushara		1467.4	1/0044	5/4/2022	0	0	0	0	0						
		WS7-1	VR841	11/3/2022	0	0	0	0	0						
		11167.0	1/0040	5/4/2022	0	0	0	0	0						
		WS7-2	VR842	11/3/2022	0	0	0	0	0						
	WS7	1467.0	1/2042	5/4/2022	0.0803	0.402	0.167	0.161	0.8103						
		WS7-3	VR843	11/3/2022	0.0985	0.415	0.123	0.164	0.8005						
		c7 (DT 425	5/4/2022	0.1	0.57	0	0.159	0.829						
		WS7-4	PT423	11/3/2022	0.0865	0.492	0	0.159	0.7375						

Concentrations identified as micrograms per liter or parts per billion.

TCR Total Chlorinated Residue for Atrazine. Reflects an additive quantity of atrazine and its three metabolites (de-ethyl, de-isopropyl and di-amino atrazine).

WUWN Wisconsin Unique Well Number

 $[\]mu\text{g/L}$ Micrograms per liter or parts per billion.

O Concentration does not exceed laboratory reporting limit of 0.05 μg/L.

Site is located within an atrazine Prohibition Area.

Detected concentration exceeds the Wisconsin Administrative Code ch. NR 140 Preventive Action Limit of 0.3 µg/L.

Table B 8: Field-Edge Groundwater Monitoring Program - 2022 Nitrogen-Nitrate/Nitrite Concentrations in Groundwater Samples

County	Site (Grower)	Well Name	WUWN	Sample Date	Nitrogen-Nitrate/Nitrite
		AD2-1	BH954	5/17/2022	26.5
		AUZ 1	B11334	10/18/2022	29.2
	AD2	AD2-4	VR844	5/17/2022	18.8
		AD2-5	VR845	10/18/2022	17.7
				5/17/2022	28.9
Adams				10/18/2022	23.2
		AD2-6	PT421	5/17/2022	11.5 13.2
				10/18/2022	
	AD5	AD5-1	CL461	5/17/2022 10/18/2022	1.18 35.5
				5/17/2022	23
		AD5-4	VR846	10/18/2022	21
		AD5-5	VR847	5/17/2022	22.4
				10/18/2022	24.8
		AD5-6	PT422	5/17/2022	5.23
				10/18/2022	5.53
	BR3	222.4		6/1/2022	2.31
_		BR3-1	BR279	11/29/2022	0
Barron		BR3-3	BR281	6/1/2022	3.72
				11/29/2022	2.86
		5.11.4		4/19/2022	15.1
Dana	DNIA	DN1-1	PT428	10/27/2022	15.8
Dane	DN1	DNC 2	BR252	4/19/2022	14.4
		DN1-3		10/27/2022	14.7
		DU1.1	40304	6/1/2022	21.1
	DU1	DU1-1	AO384	11/29/2022	25.3
	D01	DU1-3	AO386	6/1/2022	8.59
Dunn		D01-3	AU380	11/29/2022	13.4
Dullil	DU2	DU2-1	AO387	6/1/2022	6.46
		502 1	710307	11/29/2022	10.8
	302	DU2-3	AO389	6/1/2022	0.717
		502.0		11/29/2022	2.42
Grant	GR1	GR1-1	BR255	4/19/2022	12.1
		0.1.2.2		10/27/2022	20.6
		GR1-3	BR257	4/19/2022	18.5
lowa	IW1	IW1-4	BR259	10/27/2022	14.9
				4/27/2022	11.5
		DA74 F	BR260	11/10/2022 4/27/2022	28
		IW1-5 IW1-6	BR261	11/10/2022	16.5 16.4
		1441-0	BNZ01	4/27/2022	25.5
		IW1-7	BH967	11/10/2022	26.6
		IW1-8	PT425	4/27/2022	23.2
				11/10/2022	27.1
				4/27/2022	9.1
	IW2	IW2-1	BR036	11/10/2022	15.1
		IW2-3	BR038	4/27/2022	26.2
				11/10/2022	21.7
		IW2-4	PT426	4/27/2022	26.4
				11/10/2022	28.5
		IW/2 5	DT/127	4/27/2022	16.3
		IW2-5	PT427	11/10/2022	17.3
<u> </u>	JK3	JK3-1	IHUOJ	5/11/2022	1.95
Jackson			JH982	11/17/2022	2.23
		JK3-2	JH981	5/11/2022	2.22
		310-2	311301	11/17/2022	2.42
Juneau	JN1	INI1-1	BR046	5/11/2022	0.564
		JN1-1	BKU46	12/6/2022	9.99
		JN1-3	BR048	5/11/2022	25.9
				12/6/2022	28.1
	JN3	JN3-1	JH937	5/17/2022	1.11
				11/17/2022	2.36
		JN3-2	JH936	5/17/2022	2.21
			311330	11/17/2022	3.03

				6/2/2022	21.6
La Crosse	LC2	LC2-1 LC2-2	VZ391 VZ392	11/28/2022	19.9
				6/2/2022	17.1
				11/28/2022	16.9
				5/3/2022	2.02
Langlade	LN1	LN1-1	BH964	10/11/2022	12.4
				5/3/2022	15.7
		LN1-3	ВН966		15.6
				10/11/2022	
Portage	PR1	PR1-1	BR207	5/3/2022	2.08
				10/11/2022	6.85
		PR1-4	VR848	5/3/2022	20.2
				10/11/2022	20.4
		PR1-5	VR849	5/3/2022	22.4
				10/11/2022	22.9
St. Croix	SC1	SC1-1	JH938	6/2/2022	15.4
				11/28/2022	12.7
		SC1-2	JH939	6/2/2022	16
		3C1 2	פנפחנ	11/28/2022	16.2
		SK6-2	BB247	4/19/2022	20.1
				10/27/2022	27
Carril	cvc	CVC 2	DD240	4/19/2022	17.1
Sauk	SK6	SK6-3	BB248	10/27/2022	25
		CVC A	PT424	4/19/2022	8.55
		SK6-4		10/27/2022	10.3
Trempealeau	TR1	TR1-1	PX201	6/2/2022	26.5
				11/28/2022	25.5
		TR1-2	PX202	6/2/2022	20
				11/28/2022	24.4
Waupaca	WP2	WP2-1	JH985	5/3/2022	14.4
				10/11/2022	14.8
		WP2-2	JH984	5/3/2022	7.59
				10/11/2022	12.5
Waushara	WS4	WS4-1	BB258	5/4/2022	25.1
				11/3/2022	31.2
				5/4/2022	14.6
		WS4-4	BB261	11/3/2022	14.5
				5/4/2022	30.9
	WS6 WS7	WS6-1	JH989	11/3/2022	37.3
				5/4/2022	6.9
		WS6-2	JH990	11/3/2022	7.25
				5/4/2022	24.4
		WS7-1	VR841 VR842		
				11/3/2022	19.3
				5/4/2022	20.9
		WS7-3	VR843	11/3/2022	17.2
				5/4/2022	32
				11/3/2022	33
		WS7-4	PT423	5/4/2022	22.8
				11/3/2022	22.7

Notes:

WUWN Wisconsin Unique Well Number
mg/L Milligrams per liter or parts per million
0 Concentration does not exceed laboratory reporting limit of 0.5 mg/L.

Detected concentration exceeds the Wisconsin Administrative Code ch. NR 140 Preventive Action Limit of 2.0 mg/L.

Detected concentration exceeds the Wisconsin Administrative Code ch. NR 140 Enforcement Standard of 10.0 mg/L.