Agricultural-Related Risk Factors for Private Well Contamination in Northeastern, Wisconsin

Mark Borchardt, Ph.D.

Laboratory for Infectious Disease and the Environment USDA-Agricultural Research Service USGS Upper Midwest Water Science Center Sue Spencer, USDA-Agricultural Research Service

- Maureen Muldoon, UW-Oshkosh Department of Geology
- Randall Hunt, Joel Stokdyk, Aaron Firnstahl & Dave Owens
- USGS Upper Midwest Water Science Center
- **Davina Bonness** Kewaunee County Land and Water Conservation
- Burney Kieke Marshfield Clinic Research Institute

United States Department of Agriculture

Brown Water Events in Northeast Wisconsin

- Groundwater recharge, especially spring snow melt, can generate brown water events
- Several outbreaks associated with these events e.g., EHEC, *Campylobacter jejuni*
- This well is code compliant, 123 ft deep, cased to 63 ft Photos courtesy of Chuck Wagner

Silurian Dolomite Aquifer

Photos courtesy of Ken Bradbury and Maureen Muldoon

Kewaunee County Cattle

- All cattle & calves in 2016 = 97,000
- Milk cows in 2013 = 45,500
- Milk cow herds in 2016 = 167
- Concentrated Animal Feeding Operations (CAFOs) 15 dairy, one beef
- Approximately 700 million gallons cattle manure per year

Kewaunee County Septic Systems

- 4822 septic systems in the county
- 540 holding tanks, 155 abandoned

Personal comm. Lee Luft, Kewaunee County Supervisor, March 7, 2017

<u>Legend</u> Purple = replaced or inspected Red = not inspected Yellow = holding tank Blue = abandoned system

Kewaunee County septic systems

Approximately 200 million gallons septic effluent per year released to the subsurface

Research Objectives

- Estimate county-wide contamination rate for nitrate and indicator bacteria as related to depth-to-bedrock
- 2. Determine source of fecal contamination using viruses and fecal markers
- 3. Identify risk factors for private well contamination using statistical models

Objective I: Total Coliform, E. coli, Nitrate

- County-wide randomized sampling of private wells – 4,896 in county
- Stratified by depth-to-bedrock: 0-5 ft, 5-20 ft, 20+ ft
- Participation rate ~ 50%
- Several day "Synoptic" sampling
- Recharge
 - November 2015
 - 317 wells in analysis
- No recharge
 - July 2016
 - 400 wells in analysis

Effect of depth to bedrock on total coliform contamination

Effect of depth to bedrock on nitrate contamination

Objective 2: Determine fecal source

- Randomized stratified sampling from 208 wells positive for total coliform, *E. coli*, or high nitrate (N-NO₃⁻ > 10 ppm)
- Five sampling rounds:
 - April, August, November, 2016
 - January and March, 2017

Study Sampling and Analyses

- Collected 138 samples from 131 household wells in Kewaunee County
- Pump ~800 L through hemodialysis filters
- qPCR for microbial genetic targets
 - Human-specific microbes
 - Bovine-specific microbes
 - Non-specific microbes (pathogens of both people and cattle)

Microbes: Identifying the Fecal Source

(n = 138 samples from 131 wells) (red font indicates pathogenic)

Host	Microorganism	Wells	Concentration (gene copies/L)
	Adenovirus A	1	1
	Bacteroidales-like Hum M2	7	< 1 – 1050
Human-	. Human <i>Bacteroides</i>	27	< 1 – 34
specific	Cryptosporidium hominis	1	qualitative
·	Rotavirus A (G1 P[8])	7	qualitative
	All	33	

Not detected: [human-specific] adenovirus B & C, D, F, enterovirus, human polyomavirus, norovirus GI & GII [bovine-specific] coronavirus, bovine diarrheal virus 1 & 2

Microbes: Identifying the Fecal Source

(n = 138 samples from 131 wells) (red font indicates pathogenic)

Host	Microorganism	Wells	Concentration (gene copies/L)
	Bacteroidales-like Cow M2	2	29 - 915
	Bacteroidales-like Cow M3	4	3 – 49,818
	Bovine Bacteroides	36	< 1 – 42,398
Bovine-	Bovine polyomavirus	8	< 1 – 451
specific	Bovine enterovirus	1	2
	Rotavirus A (G10 P[11])	12	qualitative
	All	44	

Not detected: [human-specific] adenovirus B & C, D, F, enterovirus, human polyomavirus, norovirus GI & GII [bovine-specific] coronavirus, bovine diarrheal virus 1 & 2

Well Contamination Scoreboard

Host	Microorganism	Wells	Concentration (gene copies/L)
	Campylobacter jejuni	1	< 1
	Cryptosporidium parvum	13	qualitative
	Cryptosporidium spp.	16	< 1 – 3
	Giardia Iamblia	2	< 1
	Pathogenic E. coli (eae gene)	1	4
	Pathogenic E. coli (stx1 gene)	1	16
Non-	Pathogenic E. coli (stx2 gene)	1	1
specific	Pepper mild mottle virus	13	2 - 3811
	Rotavirus A (NSP3 gene)	17	< 1 – 4481
	Rotavirus A (VP7 gene)	7	< 1 – 732
	Rotavirus C	3	45 – 1301
	Salmonella (invA gene)	3	< 1 – 13
	Salmonella (ttr gene)	5	5 – 59
	AII	44	
	Total positive wells	79	< 1 - 49818

Objective 3: Identify Contamination Risk Factors

Why do this?

- Understand what might be the <u>causes</u> of contamination
- Understand how a <u>change</u> in risk factor magnitude affects the magnitude of contamination
- Provide policymakers and stakeholders with options for contamination <u>prevention</u>; Examples:
 - Setback distances
 - Allowable density or number of contamination sources
 - Vulnerable periods related to weather
 - Well construction best practices

Risk Factors Investigated

Land Use – Distance; count or a	acres within 750, 1500, 3000 feet of well	
<u>Agricultural</u>	Septic Systems	
Agricultural fields	All septic types	
Fields with NMPs	Drain fields	
Manure storages	Not inspected systems	
	Septage-applied fields	

Bedrock Features – Count within 750, 1500 and 3000 feet of well

Sinkholes

Bedrock ledges at the surface

Precipitation – *2, 7, 14, 21 days prior to sampling* Rainfall (cumulative, no snowfall)

Groundwater Recharge – 2, 7, 14, 21 days prior to sampling

Groundwater recharge (cumulative)

Depth to groundwater (median & minimum)

Depth to Bedrock

Risk Factor Data Sources

Groundwater depth (monitoring well)

Rainfall data

Well characteristics (construction report)

Well W WISCON	Construction Report For SIN UNIQUE WELL NUMBER	MX583
Property Owner		Telephone Number
Mailing Address		
City	State Zin Code	

Risk Factors for Human Fecal Contamination – Detection Probability

Four Significant Risk Factors

- 1. Number of septic system drain fields within 750 feet of well
- 2. Rainfall total previous 2 days
- 3. Depth to groundwater previous 14 days
- 4. Depth to bedrock

Probability of Human-Specific Microbes in Private Wells

Model accounts for the effects of: Rainfall total previous 2 days Depth to groundwater previous 14 days Depth to bedrock

Risk Factors for Dairy Manure Contamination

Risk Factors – Detection of Manure Microbes

- Groundwater recharge total previous 7 days
 Surprising unimportant factors
- Agricultural-related risk factors were not significant

Risk Factors - Concentration of Manure Microbes in Wells

- Agricultural field area (number of acres) within 750 feet of well
- Depth to bedrock

Concentration of Bovine-Specific Microbes in Private Wells Related to Agricultural Field Area

Manure Application vs Septic Systems as Contamination Sources

Manure Source

- Large fecal source
- Surface applied
- Variable application location, timing, and infiltration

Septic System Source

- Small fecal source
- Sub-surface release
- Constant location and release

Risk Factors for High Nitrate Detection -Fall and Summer Sampling

High nitrate: exceeds health standard; $N-NO_3^- > 10 \text{ ppm}$

Important factors

- Distance to nearest agricultural field
- Distance to nearest manure lagoon
- Distance to nearest field with nutrient management plan
- Area of fields (acres) with NMP within 750 feet of well
- Area of fields (acres) with NMP within 1500 feet of well
- Depth to bedrock

Unimportant factors

• Septic system variables were all not significant

Area of NMP fields within 750 feet of well is related to high nitrate detection $(N-NO_3^- > 10 \text{ ppm})$

Model accounts for the effects of:

Distance to nearest field with an NMP

Distance to manure lagoon

Depth to bedrock

Risk Factors for Coliform Bacteria Detection -Fall and Summer Sampling

Important factors

- Distance to nearest manure lagoon
- Distance to nearest agricultural field
- Distance to nearest field with nutrient management plan
- Area of fields (acres) with NMP within 750 feet of well
- Area agricultural fields (acres) within 750 feet of well
- Depth to bedrock

Unimportant factors

• Septic system variables were all not significant

Manure Lagoon Distance and Coliform Detection

Model accounts for the effects of:

Distance to nearest agricultural field

Area of fields with NMP within 750 feet of well

Depth to bedrock

Private Well Contamination by **Any** Fecal Microbe is Related to:

- Distance to manure storage
- Number septic drain fields within 750 feet
- Rainfall total the previous 2 days
- Depth to bedrock

Kewaunee County Manure Storage

277 manure storage structures

- 219 lagoons
 - > 150 lagoons (approximately) are earthen
- 51 other types (e.g., under barn, wood wall)
- 7 storage type not specified

Estimated manure volume for 242 storages (gallons)

- Range: 13,000 to 20 million
- Mean = 2.1 million

Groundwater contamination decreases with distance from manure lagoons: *Why?*

Groundwater contamination

Well Construction and Siting Risk Factors Investigated

- Well age
- Well depth
- Casing depth
- Length of casing into bedrock
- Length of casing below water table
- Open interval length
- Depth to groundwater at time of well construction
- Depth to bedrock
- Elevation at site
- Soil drainage at site

Well casing depth is NOT related to high nitrate detection ($N-NO_3^- > 10 \text{ ppm}$)

Depth to bedrock

Data restricted to casing depths between 40 and 200 feet

Highlights

- Well contamination is from both human and bovine fecal sources.
- Septic system drainfields increasing from 10 to 0 within 750 feet of a well increases contamination risk by 2.5 times for human fecal contamination.
- Fields under nutrient management plans increasing to 40 acres from 0 acres within 750 feet of a well increases risk 5-times for high nitrate
- Manure lagoon distance from a well is inversely related to coliform contamination; 3 miles distance gives 10% of the risk compared to wells located closest to lagoons (150 feet in this study).
- Well construction factors are not as important as other risk factors for contamination

Questions? Comments?

